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Abstract

Severe convective storms cause enormous loss of life and damage to property. Despite
tremendous improvements in numerical weather prediction (NWP) over the last decades,
predicting hazards at the convective scale (4-40 km) remains particularly challenging.
Convective-scale forecasts are sensitive to small-scale errors which conventional obser-
vations fail to resolve. Visible and infrared satellite channels observe the convective scale
at sufficient resolution in time and space. However, their assimilation in operational NWP
systems is still very limited as their assimilation involves nonlinear observation operators,
non-Gaussian error distributions and potentially ambiguous information. This thesis tries to
estimate the potential of assimilating cloud-affected infrared and visible satellite observations
for the prediction of severe storms and to improve our understanding of observation operator
nonlinearity.

This thesis focuses on the potential impact of satellite observations in an idealized
framework, where the truth is perfectly known and systematic model and operator deficiencies
are excluded. Idealized observing-system simulation experiments (OSSE) are employed,
in which a model simulation is used as virtual truth. This virtual truth is simulated by
integrating two selected initial conditions with the Weather Research and Forecasting (WRF)
model. The first scenario represents isolated convection triggered by a warm air bubble,
whose location is uncertain in the forecast ensemble. The second scenario features deep
convection scattered throughout the domain with a forecast ensemble that is uncertain
about the location and the life-cycle stage of convection. Observations are generated
synthetically from both scenarios and assimilated into a 40-member forecast ensemble using
the Ensemble Adjustment Kalman Filter.

The thesis is based on three publications. The first publication estimates the potential
forecast impact of assimilating either visible (0.6 µm) or infrared (6.2 and 7.3 µm) satellite
observations in the two aforementioned scenarios relative to the impact of assimilating radar
reflectivity observations. Results showed that the assimilation of satellite observations was
nearly as beneficial as the assimilation of three-dimensional radar reflectivity observations
when the prior forecast’s uncertainty was mostly in the horizontal position. When the
location and the stage of convection were unknown, the impact of satellite observations
was similar to that of 2D radar observations.

The second publication extends previous research on assimilating individual satellite
channels to the combined assimilation of multiple channels and evaluates the vertical
distribution of the resulting analysis error for different cloud conditions. It is revealed
that the combined assimilation can mitigate the ambiguity of individual visible and infrared
channels and improve the analysis of clouds.

In the third manuscript, the effect of observation operator nonlinearity of visible and
infrared radiances, which violates a basic assumption of current data assimilation schemes,
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is studied. This is done by estimating the deviation of the analysis from the expected
analysis that would result from a linear observation operator. Furthermore, it is investigated
if observations with small deviations from the model first-guess should be excluded from the
assimilation. While these observations sometimes exhibit a detrimental impact, the results
reveal that it is still beneficial to include them in the assimilation as they tell the ensemble
that the first-guess is already very accurate.

This work contributes to a better understanding of the potential benefits of assimilating
cloud-affected satellite observations for early and accurate convective-scale severe weather
warnings.



Zusammenfassung

Unwetter verursachen erhebliche wirtschaftliche Schäden und menschliches Leid. Trotz
beeindruckender Fortschritte in der numerischen Wettervorhersage (NWP) in den letzten
Jahrzehnten ist die Vorhersage von Gefahren auf konvektiver Skala (4-40 km) besonders
herausfordernd. Kleinräumige Vorhersagen sind abhängig von hochaufgelösten Anfangsbedin-
gungen, die den Zustand der Atmosphäre zu Vorhersagebeginn beschreiben. Konventionelle
Wetterbeobachtungen bieten jedoch nicht die notwendige Auflösung, im Gegensatz zu
sichtbaren und infraroten Satellitenkanälen. Die Assimilation dieser Kanäle in operationellen
NWP-Systemen ist jedoch noch sehr begrenzt, da dies mit der Verwendung von nichtlinearen
Beobachtungsoperatoren, nicht-gaußschen Fehlerverteilungen und potenziell mehrdeutiger
Informationen verbunden ist. Das Ziel der vorliegenden Arbeit ist es, das Potenzial der
Assimilation von wolkenbeeinflussten Satellitenbeobachtungen im infraroten und sichtbaren
Spektrum zur Vorhersage schwerer Stürme abzuschätzen und unser Verständnis des Effektes
von nichtlinearen Beobachtungsoperatoren zu verbessern.

Diese Dissertation untersucht den potenziellen Nutzen von Satellitenbeobachtungen in
einem idealisierten Rahmen, in dem der wahre Zustand der Atmosphäre bekannt ist und
systematische Modell- und Operatorfehler vernachlässigt werden. Der wahre Zustand wird
mit dem Weather Research and Forecasting Vorhersagemodell simuliert. Beobachtungen
werden mittels Beobachtungsoperatoren aus dem wahren Zustand der Atmosphäre generiert
und zur Assimilation mittels Ensemble Adjustment Kalman Filter verwendet. Es werden
zwei Wetterszenarien untersucht. Im ersten Szenario wird isolierte und hochreichende
Konvektion durch eine Warmluftblase ausgelöst, deren Position unsicher ist. Im zweiten
Fall tritt hochreichende Konvektion im Bereich der gesamten Modelldomäne auf, wobei
zusätzlich zur Position auch das Entwicklungsstadium der Konvektion unsicher ist.

Die Arbeit gliedert sich in drei Teile. Der erste Teil untersucht den Vorhersagenutzen
der Assimilation von entweder sichtbaren oder infraroten Satellitenmessungen in den beiden
zuvor genannten Szenarien im Vergleich zum Nutzen der Assimilation von Radarreflektiv-
itätsmessungen. Die Ergebnisse zeigten, dass die Assimilation von Satellitenmessungen einen
vergleichbaren Nutzen brachte wie die Assimilation von 3D-Radarreflektivitätsmessungen,
wenn die Position der Warmluftblase unsicher war. Im Fall des unbekannten Entwick-
lungsstadiums der Konvektion war der Nutzen von Satellitenmessungen ähnlich dem von
2D-Radarmessungen.

Im zweiten Teil wurde die Assimilation einzelner Satellitenkanäle auf die kombinierte
Assimilation mehrerer Kanäle erweitert und die Analyse der vertikalen Wolkenverteilung
für unterschiedliche Wolkenbedingungen untersucht. Es zeigte sich, dass die kombinierte
Assimilation die Mehrdeutigkeit einzelner sichtbarer und infraroter Kanäle verringern und
die Analyse der Wolken verbessern kann.

Im dritten Teil wurde der Nichtlinearitätseffekt des Beobachtungsoperators von sichtbaren
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und infraroten Messungen untersucht, der eine grundlegende Annahme der Assimilation
verletzt. Dazu wurde die Abweichung berechnet, die durch den nichtlinearen Beobach-
tungsoperator entsteht. Schlussendlich wurde beurteilt, ob Messungen assimiliert werden
sollten, selbst wenn sie nur auf geringe Vorhersagefehler hinweisen. Trotz gelegentlicher
negativer Auswirkungen solcher Messungen, war es dennoch vorteilhaft sie in die Assimilation
einzubeziehen, da sie dem Ensemble signalisieren, dass die ursprüngliche Vorhersage bereits
sehr genau war.

Diese Arbeit trägt dazu bei, ein besseres Verständnis über den Nutzen von sichtbaren
und infraroten Satellitenmessungen für kleinräumige Unwettervorhersagen zu gewinnen.
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Chapter 1

Introduction

Severe wind and torrential rain are responsible for an enormous loss of life and damage
to property. These hazards are often caused by isolated cells of deep convection or as
part of larger-scale weather systems, such as cyclones and monsoons, around the globe.
For example, in the United States, the National Oceanic and Atmospheric Administration
(NOAA) estimated a damage of $ 530 billion incurred mostly by severe storms from 2018
to 2022 (Smith, 2020), excluding storm surge and droughts. In Europe, the European
Environment Agency (EEA, 2023) estimated 6-10 thousand deaths and damages of € 346-
400 billion due to meteorological and hydrological events in its member countries in 41 years
(1980-2020). In the future, strong precipitation events are expected to produce even higher
rain rates, as a higher temperature increases potential precipitable water (Seneviratne et al.,
2012), which underlines the importance of reliable forecasts.

Over the last 50 years, weather prediction has improved tremendously. Today, numerical
weather prediction models allow early and precise warnings of synoptic-scale events like
cyclones. However, the prediction of convective-scale features, such as convection and
associated hazards, is still unreliable. A major source of forecast error is the uncertainty
in the model initial conditions that describe the state of the atmosphere at the beginning
of a forecast. Reducing the uncertainty in initial conditions is the main purpose of data
assimilation. At regular intervals, observations are assimilated to reduce errors of the model
state, which subsequently serves as initial condition for the next forecast. The increasing
resolution of numerical models calls for observations that constrain the initial conditions on
all scales resolved by the model. However, conventional observations, e.g., from surface
weather stations, are not sufficient to infer initial conditions at the convective scale. For
this scale, visible and infrared satellite channels are potentially beneficial observation types.
Despite this potential, the majority of such observations were not used operationally in 2021
(Gustafsson et al., 2018). Since recent developments enabled their assimilation, this thesis
aims to study the assimilation of cloud-affected satellite observations and their potential to
correct initial condition errors on the convective scale and thereby improve forecasts.

1.1 Numerical weather prediction and data assimilation

Today, data assimilation is a vital part of numerical weather prediction (NWP). However,
120 years ago, when the original idea of NWP was conceived, the importance of initial
condition errors on the predictability of the weather was not known.
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The first crucial step towards weather prediction was to conceive the atmosphere as a
mathematical model. This year, 2024, marks the 120-year anniversary that Vilhelm Bjerknes
(1904) laid out the concept of how the weather could be predicted using the science of
physics and mathematics1. He proposed that weather could be predicted by solving a system
of partial differential equations (PDE) for seven state variables: temperature, humidity,
pressure, three-dimensional wind, and air density. Moreover, he correctly recognized that the
solution of any PDE requires the knowledge of initial and boundary conditions. For weather
prediction, this meant that the initial atmospheric state needs to be known to predict the
weather at a later time. He understood that this was a great issue at that time since there
was no dense network of weather observations yet. Although no amount of measurements
would be enough to ascertain the initial state completely, assimilating observations improves
the initial condition and thereby combines the information of observations from different
times.

The second crucial step was to solve the equations of numerical weather prediction. For
this, several challenges had to be solved: To solve PDEs numerically, they have to be
discretized : In 1922, L.F. Richardson proposed discretization, which divides Central Europe
into grid boxes as illustrated in Figure 1.1. Then, he computed the average temperature,
pressure, and wind for these grid boxes. Another challenge was to finish the computation
of a 1-day forecast in a few hours, which is necessary for the forecasts to have practical
value. This became possible only in 1972 when the whole system of "primitive" equations
could be solved for operational forecasting purposes (Lynch, 2008).

The third crucial step was to notice the importance of accuracy and balance in the initial
conditions. Charney et al. (1950) found that geostrophically balanced initial conditions can
avoid exciting spurious gravity waves. Later, Lorenz (1963) noticed that even the errors
caused by the rounding of values can lead to divergent solutions. Thereby, he rediscovered
deterministic chaos in the domain of weather prediction, by which small errors in the
initial conditions can grow exponentially. Thus, the accuracy of forecasts is limited by the
accuracy of initial conditions. To improve the accuracy of initial conditions, a new technique
was developed. Instead of simply interpolating between observations, the idea was to
combine observations and forecasts, a procedure which is called data assimilation. Therein,
observations are integrated into a previous forecast, combining prior knowledge of older
observations with the latest observations using the knowledge of physical laws (the forecast
model). To quantify the uncertainty of forecasts, ensemble prediction systems (EPS) were
introduced, e.g., in 1992 at the European Centre for Medium-Range Weather Forecasts
(ECMWF). In an EPS, many forecasts are started from slightly different initial conditions.
The resulting divergence in forecasts is then used to estimate forecast uncertainty. Nowadays,
this information on forecast uncertainty is often also incorporated in the process of data
assimilation by ensemble or hybrid data assimilation schemes. In summary, it became clear
that data assimilation is a crucial component of numerical weather prediction.

1This was similarly proposed by Abbe (1901).
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Figure 1.1: An illustration of the discretization by Richardson (1922, second edition 2007).
A prediction computes the grid-box average of atmospheric variables for each
grid box. Note that grid boxes are much smaller today.

1.2 Satellite observations for numerical weather prediction

In the 1970s, global numerical weather prediction (NWP) had been unreliable in the
southern hemisphere due to insufficient observations and unsuitable assimilation methods.
However, today, satellite observations with nearly global coverage are the dominant source
of information for global NWP (Geer et al., 2017; Eyre et al., 2020). This success did
not come over night. In the 1970s, first sounding instruments on polar-orbiting satellites
provided vertical profiles of temperature and humidity. In the 1980s and 1990s, wind
information, derived from the movement of clouds (atmospheric motion vectors, AMV),
were first assimilated and introduced to operational NWP.

Moreover, the development of advanced data assimilation methods was crucial to leverage
the potential of satellite observations. In the early years, satellite observations were
assimilated in a sub-optimal way, in which the measured radiances were transformed into
profiles of, e.g., temperature, by retrievals. Among other issues, these profiles imitated a
high vertical resolution, which the data did not provide. Ultimately, the issues were solved
by introducing a new data assimilation method, 3D-Variational data assimilation (3D-Var),
which allowed the direct assimilation of radiances. It was introduced at NCEP and ECMWF
in 1995/1996 (Courtier et al., 1998). Two years later, 4D-Variational data assimilation
(4D-Var) was introduced, which brought another boost to global NWP (Rabier et al., 1998).
4D-Var considers that observations are taken at different times and derive increments that
are consistent with model dynamics. One example is the tracer-advection mechanism,
which can correct mislocation errors at the observation time by adjusting the wind field
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before the time of observation. It acts to move the position of the feature at the time of
the observation, as shown by Peubey and McNally (2009) for clear-sky radiances. They
also showed that 4D-Var assimilation of clear-sky radiances is a significant source of wind
information in the tropics. Regular upgrades to the 4D-Var brought a steady improvement
of forecast skill in the following years and closed the forecast skill gap between the northern
and the southern hemispheres. For example, a 7-day forecast in the southern hemisphere in
1997 became as skillful as a 5-day forecast in the northern hemisphere in 1987 (Figure 1.2).

Figure 1.2: A measure of forecast skill, the correlation of 500-hPa geopotential height
forecasts (3, 5, 7, 10-day forecasts) and the verifying analysis, expressed as
anomalies from the climatological height. From ECMWF.

1.3 Convective-scale prediction and assimilation

The convective scale (also km scale or meso-β scale, Fujita, 1981) describes meteorological
features with a size between 4 and 40 km. To simulate such features at least partially, the
grid resolution needs to be increased to less than 4 km, given that the effective resolution
of a forecast is about 4-7 times larger than the grid resolution (Skamarock, 2004; Bierdel
et al., 2012).

Convective-scale weather is typically predictable on shorter timescales than large, synoptic-
scale weather. While the predictability of synoptic-scales is believed to be around 10 days,
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estimates of convective-scale predictability vary, ranging from a few hours to a few days
(Hohenegger and Schär, 2007; Zhang et al., 2016; Zhang et al., 2019; Žagar and Szunyogh,
2020). Since global NWP models are specialized for synoptic-scale, medium-range prediction,
their horizontal resolution is limited. In contrast, regional, limited-area models, can resolve
the convective scale, and with the rapidly growing computing power also global NWP models
might be able to resolve the convective scale soon.

Having a sufficient numerical grid resolution, however, is not enough to make successful
predictions at this scale. Successful convective-scale forecasts also require observations that
provide accurate information on the convective scale for estimating the model initial state.

1.3.1 Observations for the convective scale

Today, a major source of uncertainty in convective-scale forecasts is the scarcity of ob-
servations to constrain the convective-scale initial conditions. First, surface observations
measure temperature, humidity and wind accurately. However, especially over land, their
measurements are often not representative for a larger neighborhood and are difficult to
assimilate since models often do not represent the boundary layer well. Radiosonde ob-
servations provide direct in-situ measurements of the vertical profile but are very scarce.
Aircraft measurements are more abundant, however, inhomogeneously distributed in space
and time as fewer aircraft fly at night, aircraft often follow the same airways, they usually
avoid meteorologically interesting areas of convection, and they observe the lower tropo-
sphere only close to airports. Thus, the amount of conventional observations is limited and
inhomogeneously distributed, as shown in Necker et al. (2018) for the German regional
model (Figure 1.3).

A large potential lies in the wide variety of indirect remote-sensing observations. Ground-
based wind profilers observe scattering from turbulence-induced fluctuations in atmospheric
density and humidity (Petty, 2006) from which wind profiles can be derived. Ground-based
lidar can also be used to derive lower tropospheric winds, and latest research on Atmospheric
Emitted Radiance Interferometers (AERI) aims to observe the lower tropospheric water
vapor field (e.g. Lewis et al., 2020). Yet, observations of these instruments are limited to
the small neighborhood around the observation site, and so far, the cost of these instruments
is too high to install a very high number of them in the model domain.

Networks of radars can monitor a larger area almost without gaps. However, their
global coverage is limited. The sea, sparsely populated regions, and low-income countries
are often not covered, and data quality is often inhomogeneous across national borders.
Additionally, beam-blocking by orography limits data quality in mountainous regions such as
the Alps. Rain radars observe larger, precipitating particles by measuring reflected microwave
radiation, allowing us to infer the thermodynamic structure within storms, including the
wind field. Rain radars can, however, not sample the pre-convective environment before
larger hydrometeors have formed.

Satellite-based instruments provide global coverage. Atmospheric motion vectors (AMV)
are measurements of the temporal displacement of clouds, which relates to the mean wind
field at the height of the cloud. Their height assignment is, however, intrinsically uncertain,
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Figure 1.3: The distribution of the assimilated observations in the domain of the German
regional model at 12 UTC on 29 May 2016. PROF: Wind profiler; TEMP:
Radiosonde; SYNOP: surface weather station; AIREP: Aircraft observations.
From Necker et al. (2018).

which leads to correlated and systematic errors (Folger and Weissmann, 2016). All-sky
microwave and clear-sky infrared radiances from low Earth orbits (LEO) are of substantial
value to global NWP (Geer et al., 2017). However, such observations are less suited for
convective-scale NWP since a LEO satellite revisits one region only once per day, which does
not allow an uninterrupted monitoring of convective initiation. GNSS total delay evaluate
the signal delay between satellites and ground stations which allows to infer the vertically
integrated amount of water vapor.

Visible and infrared observations from geostationary satellites

Observing convective initiation and development requires a high spatial resolution and
temporal frequency of observations. Instruments on geostationary satellites can provide such
a high temporal (≤15 min) and spatial (<5 km) resolution that is similar to the grid resolution
of convective-scale NWP and are therefore commonly used for observation-based nowcasting
of convective systems. Moreover, contrary to weather radar, their data is available over
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land and sea, is homogeneous across borders, and is not affected by orographic shadowing.

The assimilation of visible and infrared channels is the focus of this thesis. In clear-sky
conditions, infrared channels observe the humidity field, an essential ingredient of convection.
Of all the infrared channels on Meteosat Second Generation satellites, the 6.2 and 7.3 µm
channels are unique in that they are sensitive only to emissions from water vapor and clouds,
but not from the surface. This makes their assimilation easier compared to other infrared
channels that are also sensitive to surface emission (e.g. window channels). In the absence
of clouds, the 6.2 µm channel observes upper, and the 7.3 µm channel observes mid- and
upper tropospheric water vapor, as indicated by the weighting function in Figure 1.4.

A large fraction of observations is, however, cloud-affected. In cloudy conditions, infrared
radiances are strongly sensitive to cloud height. Infrared 7.3 µm radiance is sensitive to
mid-level clouds but less sensitive to lower clouds (Figure 1.4). The 0.6 µm visible channel
observes the reflectance of clouds in the visible spectrum during daytime. As the visible
wavelength is not affected by emission or absorption, radiation from any vertical level is
not attenuated and thus height-independent. Therefore, the visible channel can also detect
low-level clouds. However, the assimilation of visible and infrared cloud-affected observations
is challenging as they exhibit a nonlinear relationship to the model state. Figure 1.5 by
Geiss et al. (2021) shows the relation between 0.6 µm visible reflectance (left) and 10.8 µm
infrared radiance (right) to cloud liquid and ice water path, assuming an effective radius of
10 µm and 40 µm for liquid and ice particles, respectively.

Figure 1.4: The clear-sky weighting functions of eight infrared channels of the Spinning
Enhanced Visible and Infrared Imager (SEVIRI) onboard MSG satellites. The
weighting function describes the sensitivity of radiances on temperature and
humidity in different altitudes, as defined in section 2.3. This thesis used
channels 5 and 6. © EUMETSAT (2022).
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Figure 1.5: Nonlinear relationship between the observed visible reflectance (a) or 10.8 µm
infrared brightness temperature and the cloud liquid/ice water path (LWP and
IWP respectively). Reproduced from Geiss et al. (2021).

1.3.2 Assimilation methods for the convective scale

Although global NWP models nowadays assimilate a tremendous amount and variety of
satellite observations, the use of satellite observations in regional convective-scale models
is still very limited. Assimilating cloud-affected satellite observations on the convective
scale is still a challenging task and calls for specialized assimilation methods. Errors at
the convective scale grow non-linearly, often due to moist convection. This questions the
use of linearized dynamics in 4D-Var for convective-scale NWP. Hohenegger and Schär
(2007) estimated that the tangent-linear approximation breaks down at 1.5 h for a 2.2 km
resolution model, compared to 54 h for an 80 km resolution model.

Today, different operational centers use different assimilation algorithms for convective-
scale NWP. Apart from 3D-Var and 4D-Var, Ensemble Kalman filters (EnKF) are used to
assimilate observations on the convective scale. EnKF use the ensemble variance to estimate
the forecast error which improves upon a constant climatological estimate of the forecast
error in 3D-Var. Moreover, the ensemble covariance of the model state is used to spread the
innovation in space. Innovations (or first-guess departures) describe the difference between
observations and model-equivalents (see Figure 1.6). Certain implementations of the EnKF,
for example the Ensemble adjustment Kalman filter (EAKF), first compute an analysis in
observation space and then use the ensemble covariance between the observation and the
model state to project the observation-space increments back to model state increments.
Note that the use of the covariance implies a linearity assumption and avoids an explicit
linearization as used in variational methods. Aside from EnKFs, nonlinear assimilation
methods like particle filters do not rely on the Gaussian distributions but sample the whole
probability distribution. Sampling a high-dimensional distribution, however, requires an
unbearable amount of particles, which makes their practical implementation challenging.

Despite their potential positive benefit, cloud-affected satellite observations are still
not assimilated in many operational centers, due to a number of challenges. First, the
assimilation assumes that model-equivalents of observations can be computed without
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Figure 1.6: Comparison of observed (left) and forecasted (right) 10.8 µm radiance, by a
9-hr Met Office-forecast with 4.4 km resolution. ©EUMETSAT (2024).

systematic errors compared to observations. Moreover, the model representation of cloud
hydrometeors is simplified and often inconsistent with observation operators (Li et al.,
2022), and the model does not resolve small-scale processes. Additionally, observation
operators approximate the real radiative transfer due to computational constraints. Last
but not least, assumptions of linearity and Gaussianity of observation error distributions are
violated, which can make the assimilation less effective.

1.4 Research goals, approach and outline

1.4.1 Research goals

This thesis was conducted under the overarching research question,

What are the benefits of assimilating cloud-affected satellite observations for
predicting convective-scale storms?

and addresses three related goals, which are briefly summarized below.

1) Estimate the potential impact of assimilating visible and infrared satellite
observations

Despite their potential benefit, visible and infrared satellite channels are still not widely
assimilated in operational NWP systems. Moreover, not much was known about their benefit
compared to other observations. In 2020, when the preparation for the first publication
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of this thesis was started, there had been some research on the infrared assimilation, but
only two studies on the assimilation of visible observations in convective-scale NWP. In a
two-day case study using the near-operational setup of Deutscher Wetterdienst (DWD),
Scheck et al. (2020) investigated the impact of assimilating visible observations in addition
to other conventional observations but could not compare the impact to the impact of
other observation types. The only comparable study to this thesis is the idealized study of
Schröttle et al. (2020), which also used the assimilation framework of DWD and assimilated
only visible or infrared satellite observations, but no other observations. They suggested
that infrared assimilation might have a magnitude of impact similar to radar assimilation,
but did not conduct a direct comparison. Thus, further studies are needed that include a
direct comparison to radar assimilation, use a different NWP model and assimilation system
as well as different weather scenarios. Regarding the impact of infrared assimilation, a wide
range of phenomena was studied, including typhoons, mesoscale convective systems, and
other severe storms (Jones et al., 2015; Jones et al., 2016; Honda et al., 2018; Sawada
et al., 2019; Jones et al., 2020; Chan et al., 2020; Zhu et al., 2022). Most of these
studies, however, did not allow a comparison to the impact of other observation types, such
that the relative impact of infrared assimilation is still unclear. Moreover, the fact that
cloud-affected infrared observations were not operationally assimilated, may indicate a lack
of understanding. Chapter 3 tries to close this gap by an independent study which estimates
the relative impact of assimilating visible, infrared, and radar observations.

2) Evaluate the combined assimilation of multiple ambiguous satellite channels

Visible and infrared observations are ambiguous if they are considered on their own. Visible
reflectance is insensitive (ambiguous) to the height of the cloud. It can show a high
reflectance for low-level clouds as well as for high-level clouds. In contrast, infrared
observations strongly depend on the cloud top height. Similarly, infrared observations are
insensitive to cloud water or ice below an opaque cloud top. Therefore, a cumulonimbus
cloud can result in the same observation as an anvil of a dissipated cumulonimbus, although
the thermodynamic profile is different.

Thus, it is reasonable to believe that the assimilation of visible and infrared channels
can be complementary, for example, since the infrared is sensitive to cloud height, while
the visible is not. This motivated the study in Chapter 4, which investigates whether
the combined assimilation of visible and infrared channels can exploit the complementary
information.

3) Analyze the nonlinearity of visible and infrared observation operators

Despite the nonlinearity of observation operators for visible and infrared channels, the forecast
impact of these observations was found to be overall beneficial. The nonlinearity of the
observation operator itself is well known as shown in Figure 1.5 for the relationship between
vertically integrated cloud water content. Given the linearity assumption or linearization in
current data assimilation schemes, the operator nonlinearity leads to deviations from the
expected solution assuming linear operators. Scheck et al. (2020) analyzed the deviations
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and found considerable effects for observations with small first-guess departures. This
finding motivated a detailed investigation of operator nonlinearity of visible observations with
small first-guess departures in Chapter 5, since little is known about the consequences in a
complex NWP and data assimilation system. Finally, Chapter 5 quantifies the systematic
and random deviations caused by operator nonlinearity for the visible and an infrared channel.

1.4.2 Research approach and outline

Similarly as Schröttle et al. (2020), this thesis uses observing-system simulation experi-
ments (OSSE) to estimate the potential impact of assimilating visible, infrared and radar
observation, because it allows to precisely quantify the error reduction from the assimilation
given that the truth is known. The truth, also known as nature run, was simulated by
running a forecast model from selected idealized initial conditions. The boundary conditions
were chosen to be doubly periodic to avoid external influences. The initial conditions
were carefully chosen such that two weather scenarios of summertime deep convection
naturally evolve from them. The first scenario features isolated convection triggered by a
warm-bubble, similar to Snyder and Zhang (2003) and Tong and Xue (2005). The other
scenario (as in Bachmann et al., 2020; Schröttle et al., 2020) features deep convection
scattered throughout the domain, where the location of convection is totally random, as the
surface and the initial conditions are totally homogeneous except of random perturbations.
Observations were generated from the nature run and assimilated into a 40-member forecast
ensemble using the Ensemble adjustment Kalman filter (EAKF). The EAKF was chosen
because it allows a detailed analysis due to its serial formulation. The subsequent evaluation
shows a potential impact that presents an upper bound on the impact in an operational
model. However, by putting the potential impact of one observation type in relation to
the potential impact of another observation type, we can learn more about the relative
contributions of different observation types, even in idealized experiments.

To evaluate the nonlinearity of the observation operators, the OSSE-setup was used
to conduct additional experiments which show the nonlinearity effects in single-, and
double-observation experiments, and many-observation experiments with cycled assimilation.
The employed EAKF assimilation algorithm is ideal for this approach as due to its serial
formulation, the detailed effect of every observation can be studied.

Outline

Before going into the research studies, Chapter 2 briefly summarizes the relevant theoretical
background of numerical weather prediction, data assimilation, and observation operators.
Thereafter follow three manuscripts, of which the first (Chapter 3) is published and the
second (Chapter 4) is under review in the Quarterly Journal of the Royal Meteorological
Society (QJRMS). The third manuscript (Chapter 5) is currently in preparation for sub-
mission. Chapter 3 estimates the potential impact of assimilating either visible or infrared
cloud-affected satellite observations relative to the impact of the more commonly assimilated
observations of radar reflectivity. Chapter 4 extends the impact assessment to the combined
assimilation of visible and infrared observations and shows their complementary value for
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improved clouds. Chapter 5 evaluates the consequences of observation-operator nonlinearity
for the visible and infrared channels. Finally, Chapter 6 discusses the contributions of the
manuscripts to answering the overarching research question.
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Chapter 2

Theory & Methods

This chapter introduces the methods that were applied in this thesis. First, I start by going
briefly over the Numerical weather prediction (NWP) model. Second, data assimilation will
be introduced more fundamentally, followed by the derivation of algorithms and a review of
assumptions. Lastly, observation operators are briefly introduced.

2.1 Numerical weather prediction

This thesis applied the Weather Research and Forecasting (WRF) model (Skamarock et al.,
2021). The prognostic variables are potential temperature, geopotential, dry-air surface
pressure, inverse density, the three cartesian velocity components, and humidity, cloud water,
rain, and snow mixing ratios. The model describes the atmosphere using fully compressible,
Eulerian, non-hydrostatic equations. The vertical coordinate is terrain-following between a
variable pressure at the surface and a constant pressure at the model top. The equations
are derived from basic principles of physics, that is, conservation laws, which are applied to
small volumes of air:

• The equations of motion describe the conservation of momentum (in an inertial
reference frame) of air in three dimensions.

• The mass continuity equation describes the conservation of mass.

• Another budget equation ensures the conservation of water mass, considering that
phase transitions lead to sources and sinks, as e.g. condensation is a source of liquid
water but a sink of vapor.

• The thermodynamic equation relates temperature, pressure tendency, and the release
of latent heat from phase changes of water.

• The ideal gas law relates the states of temperature, pressure, and density through the
exchange of momentum of air molecules.

For a prediction, the differential equations must be solved numerically by approximating
differentials with differences, a process called discretization, which leads to a discrete solution
in space and time. A guide to numerical solutions is given by Durran (2010). Note that only
grid-box-averages are predicted, which implies a lower bound on the size of features that
the model can resolve. This thesis used a grid resolution (discretization) of 2 km, which
implies that only features larger than about 8-14 km can be explicitly resolved be the model
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dynamics (Skamarock, 2004; Bierdel et al., 2012). Processes on smaller scales need to be
represented by so-called parametrization schemes. Parametrizations calculate the source
and sinks of water vapor, liquid water, momentum, and heat due to unresolved processes as
e.g. cloud microphysics, radiation, turbulence and friction.

The discretization in space partitions the spatial domain of size 400×400 km into
200×200×50 cuboid grid boxes of length of 2 km and a depth between 50 m near the
surface and 500 m in the stratosphere. A historical illustration of such discretization can be
found in Figure 1.1. The prediction can be formally described as the integration of a state
vector x by a modelM from initial time t to time t + 1,

xt+1 =M(xt), (2.1)

where x consists of the values of atmospheric variables at all grid boxes,

x =

⎡⎢⎢⎢⎣
x1
x2
...
xm

⎤⎥⎥⎥⎦ . (2.2)

Note that the state vector of an operational model is typically O(108).

Idealized configuration

The WRF model offers two configurations, of which both require initial conditions, but they
differ in their use of boundary conditions. The "real" configuration requires time-varying
boundary conditions. The "ideal" configuration is used for research and allows the user
to specify special boundary conditions, as for example, the one used for this thesis: the
periodic boundary condition. Periodic boundary conditions have the advantage that the
user can study the atmospheric dynamics inside the domain without influence from other
regions. Thereby one can overcome a disadvantage of real-data regional studies, namely, to
what extent does the error in the boundary conditions influence the error inside the domain.
With periodic boundary conditions, however, the scale of the simulated model dynamics is
limited to less than half of the domain size (e.g., a larger cyclone would decelerate itself).

For the purpose of this thesis, the model surface was assumed flat and homogeneous
of type "dryland cropland and pasture" with 50% vegetation area fraction. The choice
of parametrizations follows the NOAA High-Resolution Rapid Refresh (HRRR) model
(Benjamin et al., 2016) with microphysics by Thompson et al. (2008), radiative transfer
option RRTMG (Iacono et al., 2008), Mellor-Yamada-Nakanishi-Niino (option MYNN 2.5,
Nakanishi and Niino, 2006), surface model option Noah (Tewari et al., 2004) and without
convection parametrization. The Coriolis force was shut off as in Lange and Craig (2014),
Bachmann et al. (2019), Bachmann et al. (2020), and Schröttle et al. (2020), because it
does not change the dynamics at this timescale and because it would have led to a veering
of the wind with time in a domain with periodic boundary conditions.
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2.2 Data assimilation

2.2.1 Foundations

In the early days of NWP, forecasts were initialized by an interpolation of observations.
However, observations are scarce in space and time, which leads to large interpolation
errors. Generally, the number of observations is usually much smaller than the size of the
model state vector x. To overcome this limitation, the information from observations is
nowadays combined with information from the latest available forecast in the process of
data assimilation (DA).

Using the assumptions for the discretization of a typical convective-scale NWP model
leads to more than 106 scalar temperature values, which must be specified. However, not
only temperature but also other meteorological variables like humidity, pressure, geopotential,
and wind need to be defined at the same resolution as temperature. The values at all
gridpoints are compiled in the (model) state vector of dimension O(108). On the other
hand, there are much fewer observations which are collected in an observation vector

yo =

⎡⎢⎢⎢⎣
yo,1
yo,2
...
yo,n

⎤⎥⎥⎥⎦ . (2.3)

In order to find a model state that reproduces an observation, a model state xb (the
prior) needs to be converted into a first-guess yb for the observation (model-equivalent of
the observation) by an observation operator H:

yb = H(xb). (2.4)

By comparison of the dimension of observation and model state, we see that this relation
can not be directly inverted (ill-posed problem).

Bayes theorem

Considering that predictions are subject to uncertainty, the Bayes theorem of probability
theory combines predictions and observations consistent with their average error statistics.
The probability density function (PDF) which combines the information of observations and
forecasts, is given as a product of the prior PDF and the observation "likelihood" PDF

f (x|xb, yo)⏞ ⏟⏟ ⏞
posterior PDF

= f (x|xb)⏞ ⏟⏟ ⏞
prior PDF

· f (yo |x, xb)⏞ ⏟⏟ ⏞
likelihood PDF

·
1

f (yo |xb)
(2.5)

where the last term normalizes the resulting probability to 1.
The most probable state is the state that maximizes the posterior PDF:

xa = argmax
x

f (x|xb, yo) = argmax
x

(︁
f (x|xb) · f (yo |x, xb)

)︁
(2.6)
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Assumption 1: Although the Bayes theorem (equation 2.5) is valid for any probabil-
ity distribution, operational assimilation algorithms usually assume a Gaussian PDF for
computational efficiency. Assuming an n-dimensional Gaussian

f (x) =
1

2πn/2
√︁
|Σ|
exp

(︃(︃
−
1

2
(x− µ)⊤Σ−1(x− µ)

)︃
(2.7)

for the prior and observation likelihood PDF results in a simple solution since the PDF
is completely described by the expectation µ and the covariance matrix Σ. Figure 2.1
illustrates the Bayes law applied to a Gaussian prior and observation PDF, which yields a
Gaussian posterior PDF.
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Figure 2.1: Illustration of the Bayes law (Equation 2.5) for Gaussian PDFs, combining a
prior probability distribution (blue dashed line) and an observation likelihood
(orange dotted line). The result is a posterior probability distribution (red solid
line).

For a specific prior forecast xb and a specific observation yo , we can find the most likely
atmospheric state by maximizing equation 2.6. Alternatively, the cost function

J(x) = (x− xb)⊤B−1 (x− xb) + (y0 −H(x))⊤ R−1 (y0 −H(x)) (2.8)

can be minimized with the error covariance matrices B and R. The result is equivalent to
the Bayes theorem under Assumption 1 plus the following additional assumptions (Bátkai
et al., 2016):

Assumption 2: One assumption is that prior forecasts are unbiased, i.e. that the prior
forecast is equal to the expectation E() of the true state

E(X | Xb = xb) = xb. (2.9)

This is an approximation since prior forecast can contain systematic errors.
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Assumption 3: Moreover, model-equivalents are assumed to be unbiased, which means
that the expectation of the observation, given a concrete state x is equal to the forward
operator applied to the state

E (Yo | X = x) = H(x), (2.10)

This is an approximation since forward operators may contain systematic errors.

Assumption 4: The error statistics of observations and first-guess forecasts are perfectly
known and can be described by the respective covariance matrices R and B. In particular,
model errors exhibit large fluctuations and are usually only crudely known.

Assumption 5: A linear observation operator H exists so that H(xb + (x − xb)) ≈
H(xb) +Hx−Hxb.

With these assumptions, we can find the minimum of the cost function by setting the
derivative of the cost function to zero and resolve the equation for the analysis model
state xa:

xa = xb +K [yo −H(xb)] (2.11)

with
K = BH⊤

(︁
H⊤BH+ R

)︁−1
. (2.12)

2.2.2 The Ensemble Kalman filter

This thesis applies a variant of an Ensemble Kalman filter (EnKF), which is based on the
Kalman filter. Kalman (1960) derived how the forecast error covariance matrix needs
to evolve over time, yet, in an impractical way for the high-dimensional problem of data
assimilation and the nonlinear model equations of NWP. However, the forecast error
covariance matrix can be estimated from an N-member ensemble of forecasts xib, i = 1, ..., N
as introduced in (Houtekamer et al., 1996; Houtekamer and Mitchell, 1998):

B ≈ Pb =
1

N − 1

N∑︂
i=1

(︁
xib − xb

)︁ (︁
xib − xb

)︁⊤
=

1

N − 1XX
⊤ (2.13)

where X are ensemble perturbations from the mean. Then, we can calculate the posterior
covariance matrix

Pa = (1−KH)Pb. (2.14)

Estimating the covariance from a finite sample introduces sampling error, since computer
resources only allow about O(100) ensemble members. Resulting issues are insufficient
ensemble variance (spread) and spurious prior correlations between observations and state
variables due to the limited sample size (Anderson, 2016). The error covariance (and spread)
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of an optimal analysis is given in equation 2.14. In reality, this covariance tends to underesti-
mate the true error covariance because of violated assumptions on linearity, Gaussianity, and
systematic errors or a simplification of the optimal solution due to computational restrictions.
This results in a sub-optimal analysis mean state and underestimated ensemble variances.
The underestimation can be mitigated by background error inflation and statistical correc-
tions (Anderson, 2012; Anderson, 2016; Necker et al., 2020). Spurious prior correlations
are caused by small ensembles. Small ensembles lead to a systematic overestimation of the
magnitude of covariance between the model states and model-equivalents (Necker et al.,
2020) in equation 2.12, i.e. BH = X(HX)⊤. The resulting overestimation of K leads to
overestimated increments (equation 2.11) and underestimated variance (equation 2.14).
Additionally, the ensemble variance from equation 2.13 does not account for uncertainty
due to model error (as equation 2.14 requires) unless a stochastic model is used for the
integration of the ensemble in time.

Covariance localization

Localization primarily mitigates spurious correlations. The affordable ensemble size is much
smaller than the degrees of freedom of the model, which leads to sampling errors due to
the small sample size. Today, the main approach is a physically-motivated distance-based
localization, based on the idea that there is no sampling error in case of a zero covariance
in equation 2.13 or 2.19. The physical motivation comes from knowledge of the primitive
equations, where dynamical effects are local, but can propagate in space. Therefore, we
expect that small-distance correlations are less affected by sampling error than long-distance
correlations. To reduce the magnitude of correlations, one multiplies the sample covariance
value with a factor (≤1) which decreases with distance. A typical length at which the factor
reaches zero would be (up to) 200 km for radiosonde observations (Schraff et al., 2016)
and 40 km for radar and cloud-affected satellite observations.

Background error inflation

Inflation is a direct way of increasing the ensemble variance. In general, inflation can be
additive or multiplicative, and applied prior or posterior to the assimilation. Prior inflation
tends to mitigate variance underestimation due to model error, as it is applied after model
integration and before assimilation. Posterior inflation is done after assimilation and can
thus mitigate sampling errors caused in the assimilation (Gharamti et al., 2019). In practice,
posterior inflation also has the advantage that a potentially unphysical perturbation can
evolve into a physically consistent perturbation during the model integration. This thesis
applied posterior multiplicative inflation using the method "relaxation to prior spread", where
the inflated posterior spread σ′a is set to be a weighted average of the prior spread σb and
posterior spread σa:

σ′a ← σb(1− α) + σaα (2.15)
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2.2.3 The Ensemble Adjustment Kalman Filter

This thesis applied the Ensemble adjustment Kalman filter (EAKF) by Anderson (2001)
through a software package called Data Assimilation Research Testbed, abbreviated DART
(UCAR/NCAR/CISL/DAReS, 2022). The EAKF is an implementation of the EnKF, but
it is a deterministic square root filter which has been implemented in a scalar formulation
in DART and assimilates observations serially (one after another). The scalar and serial
formulation assumes temporally (Anderson, 2001) and spatially uncorrelated observations
errors (Houtekamer and Mitchell, 2001). Accounting for spatial observation error correlation
in the EAKF is possible and beneficial, but requires a decomposition of the observations
into multiple scale components (Ying, 2020).

The first step in the assimilation is the analysis in observation space, and equivalent to
a one-dimensional optimal interpolation. The scalar algorithm, as described in Anderson
(2003), Karspeck and Anderson (2007), and Anderson and Collins (2007), combines the
observation yo and the forecast first-guess ensemble mean yb, under consideration of their
error variances, σ2o and σ2b and results in an analysis PDF that is Gaussian with mean

ya = yb +
σ2b

σ2o + σ
2
b

(yo − yb) (2.16)

and variance

σ2a =
σ2bσ

2
o

σ2b + σ
2
o

. (2.17)

In a second step, the prior ensemble is shifted to its new mean and the ensemble perturbations
are adjusted by

y ai − y a = α
(︂
ybi − yb

)︂
(2.18)

with the spread contraction factor α =
√︂
σ2o/(σ

2
o + σ

2
b). The posterior PDF with ya and

σ2a is optimal.
In the third and last step, the observation increments δyi = y ai − ybi for each member i

are mapped into model space by state increments

δxi j =
Cov

(︂
xbj ,H(xbj )

)︂
σ2
yb

δyi . (2.19)

Note that in a serial implementation, the first-guess for the next observation needs to
be updated after each observation. To account for the impact of previously assimilated
observations, it is necessary to either apply the observation operator on the updated state
(which is inefficient) or approximate the impact using regression (efficient, see Equation
3.13 in Anderson and Collins, 2007).

Linearity assumptions

Although the EAKF and variational methods usually use the full observation operator H
for the innovation, they differ in their assumptions on linearity. Variational methods use a

19



linearized operator of H in the Kalman gain. The EAKF does not use an explicitly linearized
operator but computes the posterior in observation space and projects the increments to
model space using the covariance of the nonlinear relationship between the model state
variable and the model-equivalent (Equation 2.19). The EAKF thus assumes a linear relation
between observations and model states in the mapping from observation increments to
model space. Violating this assumption obviously introduces errors.

2.3 Observation operators

The following section introduces the radiative transfer models that were used to simulate
the radiances that would be measured from a satellite. Both models simulate the radiative
transfer without 3D effects for each atmospheric column independently.

2.3.1 Infrared radiance

Radiances in the infrared spectrum are determined mainly by the emission and absorption
of radiation from cloud hydrometeors and greenhouse gases, mostly water vapor. The
scattering in clouds is negligible for the short timescales of weather forecasts but would be
relevant for climate simulations. In the infrared spectrum, we can detect the existence of
clouds, their cloud top temperature, and their height. In clear-sky conditions, it is possible
to infer the water vapor content and its gradient.

Infrared radiances for the assimilation were simulated using Chou-scaling (Chou et al.,
1999) implemented in RTTOV (Saunders et al., 2010). Chou-scaling is a fast infrared
multiple-scattering approximation which solves radiative transfer in the same form as for clear
sky conditions, but with a scaling of the scattering optical depth. The scaling approximates
the contribution of thermal diffuse scattered radiation. The radiative transfer equation
for the infrared can be outlined as follows. An infrared radiance I passing through a layer
of thickness dz , changes by the amount dI due to absorption and emission (neglecting
scattering),

dI = βeBλ
(︁
T (z)

)︁
dz⏞ ⏟⏟ ⏞

emission

− βaIdz⏞ ⏟⏟ ⏞
absorption

, (2.20)

with the coefficient of emission and absorption βe = βa and the Planck function Bλ which
depends on the temperature T .

By integration, we find the radiance at the top of the atmosphere

Iλ(∞) = I(0)t∗ +
∫︂ ∞
0

Bλ
(︁
T (z)

)︁
W (z)dz. (2.21)

The weighting function (illustrated in Figure 1.4)

W (z) =
dt(z,∞)
dz

=
βa(z)

µ
t(z,∞) (2.22)

is the derivative of the transmittance t. The transmittance from the surface to the top
of the atmosphere is t∗. The radiance from the surface I(0) depends on the surface
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temperature. For 6.2 and 7.3 µm, the transmittance from the surface t∗ is zero, leaving
only atmospheric contributions from the second term (see Figure 1.4).

2.3.2 Visible reflectance

Visible reflectance measures the fraction of the sun’s radiation that is reflected to the
observer. This thesis investigates the assimilation of visible reflectance observations from a
geostationary satellite at a wavelength of 0.6 µm. In the absence of clouds and aerosols, the
surface albedo determines the visible reflectance. In cloudy conditions, the 0.6 µm channel
is primarily sensitive to liquid water clouds and less sensitive to ice clouds. Contrary to the
infrared spectrum, the height of a cloud has nearly no impact on visible reflectance since
the cloud-free atmosphere hardly absorbs shortwave radiation. This height independence
makes visible reflectance ambiguous regarding the vertical extent of clouds but allows the
detection of low-level water clouds and shallow convection, while the infrared 6.2 and 7.3 µm
channels can hardly detect them. Contrary to infrared channels, the visible channel is less
sensitive to thin ice clouds, which are usually semi-transparent in the visible channel. Thus,
the visible channel can help to discriminate between cirrus and high cumulus clouds.

In this thesis, the visible reflectance was calculated using an approximation of the radiative
transfer equation based on a look-up-table approach (Frèrebeau, 2014; Kostka et al., 2014;
Scheck et al., 2016), since the exact solution is too resource-expensive and slow for data
assimilation. MFASIS depends on eight parameters:

• vertically integrated optical depths for water and ice clouds and

• effective particle sizes for water and ice clouds,

• the surface albedo,

• the sun and satellite zenith angles and

• the scattering angle.

The dependence of visible reflectance on the liquid or ice water path is illustrated in Figure
1.5 using certain assumptions for the other parameters, e.g., the effective particle size of
10 and 40 µm for water and ice particles, respectively. MFASIS uses 1D approximation of
radiative transfer, which may be relaxed in the future. However, the approximation is less
relevant for this thesis, as the operator is assumed to be perfect, i.e. the same operator is
used to simulate observations and to generate model-equivalents.

For completeness, the full radiative transfer equation is given here. However, its numerical
solution is too costly for operational NWP since it involves 3D cloud-scattering. The
differential equation for an optical path length ds is

dI = −βeIds + βaB(T )ds +
βs
4π

∫︂
4π

p(Ω′,Ω)I(Ω′)dωds. (2.23)

where we have to integrate over all directions ω. Radiation from any direction Ω′ can
contribute to the radiation measured in the direction Ω. The scattered direction and the
scattering phase function p(Ω′,Ω) depend on the size of the scattering particles and the
shape of the particles, which can be very different for ice crystals.
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Chapter 3

Potential impact of assimilating visible and
infrared satellite observations

Overview

The first publication investigates the potential benefit of visible and infrared assimilation
(the first research goal in Section 1.4), relative to radar assimilation for two selected cases.
It presents the first study that directly compares the assimilation of visible (0.6 µm), infrared
(6.2 and 7.3 µm), and radar (10 cm) observations. Furthermore, it represents the first
application of the idealized Observing-system simulation experiments (OSSE) setup that
was developed during the course of this thesis and contains a detailed description of the
setup, i.e., the initial conditions and perturbations, the two cases (weather situations),
the observing and the assimilation system. Systematic model and operator errors are
excluded to focus on the effectiveness of assimilating nonlinear observations in an Ensemble
adjustment Kalman filter (EAKF) without distraction by potential systematic model errors
and systematic operator deficiencies. Therefore, the achieved absolute forecast improvement
needs to be treated with caution, but the relative impact of different observation types
can be expected to be largely transferable to real NWP systems as all of the compared
observation types are similarly affected by such systematic errors.

Own contribution

Conceptualization, formal analysis, investigation, methodology, software, visualization,
writing. The author’s contribution to this publication is estimated to be about 70%. In
preparation to this work, the experiment setup was developed and tested, which combines
the Data Assimilation Research Testbed (DART), the Weather Research and Forecasting
(WRF) model and RTTOV observation operators.
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Abstract
Although cloud-affected satellite observations are heavily used for nowcasting
applications, their use in regional data assimilation is very limited despite possi-
ble benefits for convective-scale forecasts. In this article, we estimate the poten-
tial impact of assimilating cloud-affected satellite observations of visible (0.6 μm)
and near thermal infrared wavelengths (6.2 and 7.3 μm) relative to the impact of
assimilating radar reflectivity observations. We employed observing-system sim-
ulation experiments with a perfect-model forecast for two cases of strong convec-
tive summertime precipitation. Observations are simulated using the radiative
transfer model RTTOV/MFASIS and assimilated by the ensemble adjustment
Kalman filter in the Data Assimilation Research Testbed. The Weather Research
and Forecasting model at 2-km grid resolution was used for forecasts. Results
show that satellite observations can be nearly as beneficial as three-dimensional
radar reflectivity observations. Under favorable conditions, where the prior con-
tains no error in the stage of storm development but only in horizontal position
and strength, the assimilation of visible observations leads to 88% of the radar
impact. Under more difficult conditions, the impact of visible and infrared
observations still reached 50 and 79%, respectively.

K E Y W O R D S
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2 KUGLER et al.

1 INTRODUCTION

Clouds are the first area-wide observable signal of convec-
tion and are heavily used in nowcasting applications. How-
ever, in contrast to nowcasting, the use of cloud-affected
satellite observations in data assimilation is very limited
(Gustafsson et al., 2018). Clouds are detected earlier by
the visible satellite channel than by radars, which are
more commonly used in regional data assimilation sys-
tems. In contrast to radar, satellite observations are avail-
able in most parts of the world, including mountainous or
sparsely populated areas, and they provide homogeneous
quality across borders (Maddox et al., 2002; Roebeling
et al., 2012; Saltikoff et al., 2019; Martinaitis et al., 2020).
Additionally, thermal infrared satellite channels observe
tropospheric water-vapor content (6.2 and 7.3 μm) as well
as cloud-top temperature (10.8 μm). Near-infrared chan-
nels can distinguish between ice and water clouds (1.6 μm)
and detect nighttime low-level clouds and fog (3.9 μm).
Additionally, visible channels can observe low-level stratus
clouds during daytime, which is a major issue for regional
weather forecasts (Hu et al., 2022). Thus, there is a large
potential for improving weather forecasts by assimilat-
ing cloud-affected satellite observations. Nevertheless, cur-
rent operational regional data assimilation systems largely
ignore satellite observations of clouds and thereby omit
crucial information on clouds and developing storms.

The assimilation of cloud-affected satellite observa-
tions in current assimilation systems is a challenging
task. However, most related challenges also apply to the
more commonly assimilated radar observations. First, the
limited numerical representation of cloud processes and
hydrometeors, as well as simplification of observation
operators, leads to systematic errors between models and
observations (Scheck et al., 2018; Geiss et al., 2021), which
violates the basic assumption of an unbiased first-guess
forecast of current data assimilation schemes (Gustafs-
son et al., 2018). These issues were avoided in this study
by employing an observing-system simulation experiment
(OSSE) with an identical model for the nature run and
forecasts, as well as perfect observation operators in the
forecast. Second, cloud-affected observations violate the
assumption of linear observation operators and Gaus-
sian error distributions, as the observations are nonlinear
functions of model state variables and their error distri-
butions are often non-Gaussian. In consequence, assimi-
lating these observations violates assumptions of current
data assimilation schemes and may lead to a suboptimal
analysis in certain conditions.

Most studies on the assimilation of thermal infrared
satellite observations focused on wavelengths in the
water-vapor sensitive band (5–8.5 μm), since these
wavelengths are less sensitive to surface emission, which

is difficult to model accurately. Otkin (2012a, 2012b) pio-
neered direct assimilation using four channels between
6.2 and 8.5 μm, albeit at a resolution of 15 km that resolves
deep convection only partly. In convection-permitting
models, infrared observations had a positive analysis and
forecast impact for the prediction of typhoons, mesoscale
convective systems, and severe weather events under
weak and strong large-scale forcing (Jones et al., 2015,
2016, 2020; Honda et al., 2018; Sawada et al., 2019; Zhu
et al., 2022; Eure et al., 2023). Comparing the assimilation
of infrared and radar observations, Zhang et al. (2019)
found that assimilating infrared observations before storm
initiation can advance the warning time for mesocyclones
by several tens of minutes compared with assimilating
radar observations only. Similarly, assimilating visi-
ble observations is expected to advance warning times
even further. A direct comparison between the impact
of visible and infrared satellite channels with that of
radar observations has, however, never been conducted
so far.

While several studies investigated the assimilation of
infrared channels in convective-scale numerical weather
prediction (NWP) models, visible channels have received
little attention by the research community so far. Since
the fast visible forward operator method for fast satellite
image simulation (MFASIS, Scheck et al., 2016) was pub-
lished, only two studies have investigated the benefit of
visible observations for convective-scale NWP. Both these
studies used the regional NWP system of Deutscher Wet-
terdienst, which recently also included the assimilation
of visible observations in its operational configuration in
March 2023. The two studies investigated the impact of
visible observations in an idealized and near-operational
setup: Schröttle et al. (2020) conducted an idealized OSSE
and found a positive impact by assimilating infrared and
visible observations, with the infrared leading to higher
impact. Scheck et al. (2020) evaluated the impact of only
visible observations in a case study with a near-operational
assimilation system and found beneficial impact not only
on cloud cover but also on temperature, humidity, and pre-
cipitation. Given their experimental setup, however, they
could not quantify the impact in comparison with other
observation types. Additionally, both previous studies used
the regional model ICON and a local ensemble transform
Kalman filter (LETKF) data assimilation system, whereas
the impact of visible observations has not been investigated
in any other convection-permitting numerical weather
prediction (NWP) system. This motivated the direct com-
parison of the impact of different observation types in the
present study and the use of a different modelling and
assimilation system.

Data-denial experiments with operational NWP sys-
tems can be misleading in the way they estimate the
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KUGLER et al. 3

analysis impact of a new observation type, as the impact
of additional observations may be hampered by system-
atic model deficiencies without extensive tuning of the
assimilation and model physics settings. Additionally,
increments from other observation types may conceal the
impact of the newly added observations. To avoid this,
we assess the forecast impact of each observation type in
separate experiments. The separate assimilation of differ-
ent observation types allows for a detailed analysis of the
effects of each type and reveals the potential weaknesses
of each one. To put the impact of satellite observations
in this setup in the context of more commonly assimi-
lated observations, we additionally conducted comparable
experiments that assimilated 2D and 3D radar observa-
tions. Furthermore, current operational systems are sub-
optimal in many respects: for example, concerning the
representation of hydrometeors and related biases as well
as the representation of related model errors. The result-
ing systematic differences between the forecast model and
the nature run affect the analysis quality and need to be
taken into account when estimating the absolute impact
of observations in an OSSE (Errico and Privé, 2018). In
this study, we avoid systematic model error to focus on
the efficacy of assimilating cloud-related observations in
an ensemble Kalman filter and only estimate the impact of
observations in relative terms. Thus, we assess the forecast
impact in a perfect model OSSE using the identical model
configuration for the nature run and forecasts.

Convective-scale data assimilation is a challenging task
full of open research questions, as for example, outlined in
Hu et al. (2022). To gain further insights on the assimila-
tion of additional complex observation types, researchers
have studied the assimilation in weather scenarios of
increasing complexity for data assimilation: (1) isolated
supercells triggered from a “warm bubble” (Snyder and
Zhang, 2003; Tong and Xue, 2005), (2) supercells, convec-
tive lines, and multicells (Aksoy et al., 2009), and (3) chaot-
ically triggered deep convection (Bachmann et al., 2019,
2020). The third scenario describes deep convection trig-
gered at random locations and is termed the “random” case
in this article. It can be considered one of the most diffi-
cult and least predictable scenarios, as this case exhibits a
high sensitivity to initial conditions and low predictability
due to fast error growth and interaction between different
cells.

In this study, we evaluate two cases, the less predictable
“random” case and the “warm-bubble” case, and estimate
the potential impact of assimilating visible and infrared
satellite observations, relative to the impact of assimilat-
ing radar reflectivity. We employ the ensemble adjustment
Kalman filter (EAKF), as it is a commonly used algorithm,
which allows for a detailed analysis of the impact of differ-
ent observations. Specifically, we investigate the following:

1 whether the EAKF is able to extract useful information
from visible observations into a convective-scale model;

2 the relative impact of visible and infrared observa-
tions on precipitation and cloud forecasts relative to the
impact of radar observations (Section 3.1);

3 the effect of assimilating visible and infrared observa-
tions on unobserved state variables (section 3.2);

4 why the assimilation of satellite observations is surpris-
ingly beneficial in one case but less beneficial in the
other (Section 3.3).

By this investigation, we intend to contribute to a
better understanding of the impact of satellite observa-
tions, which is crucial for the efficient use of compu-
tational, observational, and staff resources (Gustafsson
et al., 2018).

2 EXPERIMENTAL DESIGN

2.1 Description of the cases

We estimated the potential impact of cloud-affected satel-
lite observations in two scenarios, one isolated super-
cell and scattered supercells. Both cases were simulated
on the same idealized domain with a homogeneous flat
surface and horizontally periodic boundary conditions
(see Section 2.2). Both cases share the same base-state

F I G U R E 1 Skew T–log p diagram of the nature-run initial
condition, from domain average fields. Shown are domain-average
profiles of temperature, dewpoint, and a parcel-lifting curve. The
temperature perturbation in the warm-bubble case modifies this
profile. [Colour figure can be viewed at wileyonlinelibrary.com]
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4 KUGLER et al.

profiles of temperature, water vapor, moisture, and wind
illustrated in Figure 1. It is a modified sounding from
Payerne, Switzerland on July 30, 2008 and offers a
highly unstable environment with 2670 J⋅kg−1 CAPE and
26 J⋅kg−1 CIN at 0700 UTC in the nature run. In this arti-
cle, time UTC is equivalent to local solar time, since the
solar radiation is that of 0◦ longitude. We start with a
description of the nature run. A more detailed description
of initial conditions and ensemble perturbations follows in
Section 2.3.

2.1.1 Nature run for case “random”

In the “random” case, small random perturbations of tem-
perature and vertical velocity (for details see Section 2.3)
trigger storms at random locations scattered through-
out the whole domain. The nature run is initialized at
0600 UTC (= local solar time) with the sounding pro-
file depicted in Figure 1. Figure 2 shows the evolution
of storms from the perspective of a 7.3-μm infrared satel-
lite image and Figure 3 shows the same in 0.6-μm visible
reflectance. At 1100 UTC, 5 hr into the simulation, con-
vection reached altitudes of about 10 km. Shortly after, at
1200 UTC, about 10–15 cells are visible and continue to

grow while others dissipate. The resulting storms are in
different stages of their development and interact dynam-
ically, which leads to fast-growing model error and a low
predictability of the order of hours. After 1600 UTC, con-
vection decays.

2.1.2 Nature run for case “warm bubble”

In the second case, a positive temperature increment
(“warm bubble”) is added to the initial temperature field
(see Figure 4). It triggers an isolated and well-organized
supercell with >200 m2⋅s−2 updraft helicity (Kain
et al., 2008) in a confined region of the domain and sup-
presses convection elsewhere. Similar warm-bubbles have
been used by Snyder and Zhang (2003) and Tong and
Xue (2005).

This warm-bubble case was initialized at 1200 UTC
with initial conditions as described in Section 2.3. Figures 5
and 6 display the evolution in simulated satellite images
of the 7.3- and 0.6-μm channels. Within a few minutes
of model integration, deep convection developed in the
nature run. At approximately 1235 UTC, the first precipi-
tation developed. After 1730 UTC, the storms reached the
domain boundary.

F I G U R E 2 Infrared 7.3-μm satellite images of the “random” case nature run. [Colour figure can be viewed at wileyonlinelibrary.com]
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KUGLER et al. 5

F I G U R E 3 Visible 0.6-μm satellite images of the “random” case nature run. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 Cross-sections through the warm-bubble
(temperature perturbation): Vertical–horizontal slice (top) at
north_south=0 and horizontal–horizontal slice (bottom) at
Height=0, both marked by a dashed line. [Colour figure can be
viewed at wileyonlinelibrary.com]

2.2 Prediction model

We used the Weather Research and Forecasting model
(WRF) version 4.3 (Skamarock et al., 2021) in an ide-
alized mode for both the forecast ensemble and the
nature run in identical configurations (perfect model). As
in preceding studies (Lange and Craig, 2014; Bachmann
et al., 2019, 2020; Schröttle et al., 2020), we neglected
the Coriolis force, as it does not have a significant effect
on the dynamics at this timescale. Also, it would lead
to veering of the mean wind given the periodic domain.
The physics parametrizations closely follow the config-
uration of the operational National Oceanic and Atmo-
spheric Administration (NOAA) High-Resolution Rapid
Refresh (HRRR) model described in Benjamin et al. (2016)
with microphysics from Thompson et al. (2008); rapid
radiative transfer model for general circulation mod-
els short- and longwave schemes (Iacono et al., 2008),
Mellor-Yamada-Nakanishi-Niino (MYNN 2.5 for the plan-
etary boundary layer (PBL) and surface-layer parametriza-
tion from Nakanishi and Niino (2006), Noah land-surface
model (Cuenca and Tewari, 2004), and without cumulus
parametrization. Default dynamics options were used with
an adaptive timestep between 6 and 16 s.
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6 KUGLER et al.

F I G U R E 5 Infrared 7.3-μm satellite images of the warm-bubble case nature run. [Colour figure can be viewed at
wileyonlinelibrary.com]

2.2.1 Domain description

The domain features 200 × 200 mass grid points with
a 2-km resolution. The layer depth is 25 m at the sur-
face and increases to about 500 m at 3 km above ground,
then staying roughly constant until the model top at about
21.5 km, at staggered level 51. The upper boundary con-
dition is a Rayleigh relaxation layer above 15 km. The
surface is homogeneous and flat terrain at 489 m altitude
above sea level and of type “Dryland Cropland and Pas-
ture” (IVGTYPE=2) with 50% vegetation fraction on soil
type “loam” (ISLTYPE=6). Solar radiation resembles a
summer day (July 30, 2008) at a latitude of 45◦N.

2.3 Initial and boundary conditions

2.3.1 Initial conditions of the nature run

The initial conditions of the nature run feature a highly
unstable stratification with a CAPE of 2670 J⋅kg−1 and a
CIN of 26 J⋅kg−1 at 0700 UTC, such that relatively small
perturbations trigger deep convection (Figure 1). The pro-
files were taken from Lange et al. (2017), Bachmann
et al. (2019), and Schröttle et al. (2020), but modified

for humidity and wind. The humidity was clipped to 80%
relative humidity, which reduced the humidity in the pres-
sure intervals 900–750 hPa and 350–200 hPa, in order to
avoid stratiform clouds in the whole domain. The wind
shear was increased considerably to bulk shears of 14, 38,
and 61 knots in the layers 0–1, 0–3, and 0–6 km, respec-
tively, to support long-lived supercells.

In the “warm-bubble” case, an additional temperature
increment ΔT(x, y, z) was added to the initial temperature
field, defined as

ΔT = A exp
[
−
(

r(x, y)
cr

)2
]

exp
[
−
(

z
cz

)2
]
, (1)

where r(x, y) =
√
(x − xc)2 + (y − yc)2 is the distance from

the bubble center; A is the maximum perturbation (3 K),
the tuple (xc, yc) is the center of the bubble, cr is the hori-
zontal decay (15 km), and cz is the vertical decay (2 km).

2.3.2 Initial perturbations in the forecast
ensemble

While a real-data experiment comes with a prior fore-
cast ensemble, we have to make a realistic guess about
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KUGLER et al. 7

F I G U R E 6 Visible 0.6-μm satellite images of the warm-bubble case nature run. [Colour figure can be viewed at wileyonlinelibrary.com]

the prior uncertainty for this OSSE. To be consistent with
prior publications, we use the approach from Schröttle
et al. (2020) that facilitates two kinds of perturbations: (1)
Vertically auto-correlated profile perturbations represent-
ing large-scale errors and (2) small-scale boundary layer
noise.

(1) Before initializing the ensemble forecast, we per-
turb the vertical profile of temperature, moisture, and
wind. This inter alia leads to modified convective sta-
bility, which delays or accelerates the evolution of
deep convection. The perturbations are created by
choosing one random number for every 20th vertical
level of the original 200-level profile and then inter-
polating between them, such that we end up with a
vertically auto-correlated profile of random perturba-
tions for every ensemble member. The random num-
bers are created using a standard deviation of 0.25 K
for temperature and 2% for relative humidity and
wind. The resulting profiles are used as input profiles
for the WRF initialization program (ideal.exe),
which modifies the profiles slightly for hydrostatic
balancing.

(2) Small-scale random noise was added to the temper-
ature and vertical velocity in the lowest levels to
avoid unrealistic spatially homogeneous fields. The
perturbations are relaxed toward zero with height:

for temperature following x exp((p − psfc)∕25) with p
in hPa, for velocity following x exp((1 − k)∕2) where
k is the level number, where x was drawn from a
Gaussian with 𝜎 = 0.02 (K or m⋅s−1) for each col-
umn. Although the horizontal variation of temper-
ature was this small at the initialization time, the
perturbations grew considerably in the following 6 hr,
reaching a spread of 1 K in temperature, 20% in
relative humidity, and 2 m⋅s−1 in zonal wind (ran-
dom case, Figure 7). In the warm-bubble case, the
horizontal average spread was smaller due to the
shorter spin-up time of 0.5 hr and the small fraction
of the domain in which convection took place, reach-
ing a spread of 0.5 K in temperature, 5% in relative
humidity, and 1 m⋅s−1 in zonal wind at 1300 UTC
(not shown).

2.3.3 Additional perturbations in the
“warm-bubble” case

In the “warm-bubble” case, we imposed another uncer-
tainty in two parameters (see Equation 1):

• the horizontal location of the warm bubble by perturb-
ing the center (xc, yc) in the north/south and east/west
direction by ± 60 km (uniformly random) and
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8 KUGLER et al.

F I G U R E 7 Vertical profile of ensemble spread (horizontal
average) of temperature, relative humidity, and the u-wind
component at 1300 prior to the first assimilation in the “random”
case. [Colour figure can be viewed at wileyonlinelibrary.com]

• the spatial extent and strength by perturbing the ampli-
tude A by ± 1 K (uniformly random).

2.4 Simulated observations

Four types of observations have been used in this study, as
listed below.

(1) Satellite observations of visible reflectance at a wave-
length of 0.6 μm reveal how much sunlight is reflected
by clouds or the surface. In contrast to radar reflectiv-
ity, the observations already provide information on
clouds in their early stage, right after rising plumes
reach the condensation level. Reflectance describes
the ratio of reflected radiance to the total incoming
irradiance and is therefore a dimensionless value in
the range of 0–1. The lowest possible value in practice
is, however, determined by the surface albedo, which
is around 0.27 in our setup. The instrument error for
the visible channel was chosen to be 3% following
Schröttle et al. (2020).

(2) Satellite observations of infrared brightness tempera-
ture of the 6.2-μm channel (Meteosat Second Genera-
tion (MSG) 4 Spinning Enhanced Visible and Infrared
Imager (SEVIRI) channel 5, Geostationary Opera-
tional Environmental Satellites (GOES) Advance ABI,
and Advanced Himawari Imager (AHI) band 8) are
specifically sensitive to upper tropospheric water
vapor and clouds. For clouds, the observations mainly
provide information on the cloud-top height, as can
be seen by lower brightness temperatures for higher

cloud tops. The instrument error was chosen to be
1 K. In contrast, Cintineo et al. (2016) did not sim-
ulate instrument errors for brightness temperature
(BT) observations.

(3) Satellite observations of infrared brightness tempera-
ture of the 7.3-μm channel (MSG-4 SEVIRI channel
6, GOES ABI, and Himawari AHI band 10) provide
similar information to the 6.2-μm channel but are
more sensitive to lower tropospheric water vapor. An
instrument error of 1 K was selected.

(4) Finally, three-dimensional radar reflectivity (10 cm)
serves as a reference observation type to for evaluating
the impact of satellite observations. An instrument
error of 2.5 dBz was chosen, half the error of Wheat-
ley et al. (2015) and Bachmann et al. (2020), who used
5 dBz.

Observations yo were generated using the Data Assim-
ilation Research Testbed (DART) provided by UCAR/N-
CAR/CISL/DAReS (2022). It interpolates the nature run’s
state xnat to each observation’s location and applies an
observation operator  to the state xnat before adding
Gaussian instrument error:

yo = (xnat) + 𝜀, 𝜀 ∼ (0, 𝜎o). (2)

The resolution of satellite observations was effectively
grid-scale (2 km). The model equivalents of observations,
yb = (xb), were generated using the same observation
operators to avoid systematic errors between forecast and
observations.

Satellite observations were simulated using the default
Chou scaling for the infrared channels (Chou et al., 1999)
and MFASIS Scheck et al., 2016) for the visible chan-
nel, as provided in the RT model for the television and
infrared observational satellite (TIROS) operational ver-
tical sounder (RTTOV) v13.3 (Saunders et al., 2018).
For radar reflectivity, the operator included in the WRF
Thompson microphysics module was used. The surface
albedo and emissivities are given by RTTOV default val-
ues. To simulate cloudy radiances, we assumed an effective
particle diameter of 20 μm for water droplets and 60 μm
for ice crystals. For the satellite geometry, we assumed a
geostationary satellite at the Equator with an azimuth of
180◦ and zenith of 45◦. The solar angles were computed
using the pysolarmodule assuming a latitude of 45◦ and
longitude 0◦.

2.5 Assimilation system and settings

Our experiments applied the EAKF by Anderson (2001)
included in DART Anderson et al. (2009)1 to a 40-member

1https://dart.ucar.edu
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KUGLER et al. 9

forecast ensemble. The EAKF is a serial deterministic
square-root filter, which assimilates one observation after
another. The following variables were updated: tempera-
ture, water-vapor mixing ratio, dry air mass in column,
geopotential, wind components U, V , W , cloud water, and
ice mixing ratio.

Posterior covariance inflation was applied, since exper-
iments without inflation indicated that analysis ensem-
ble spread would have been underestimated. Specifically,
relaxation to prior spread (RTPS) with factor 𝛼 = 0.9 was
used to inflate ensemble perturbations. Note that a value
of 𝛼 = 1 would prevent any variance reduction and restrict
updates to updates of the mean, while 𝛼 = 0 would mean
no inflation. We localized covariances in the horizontal
to 20 km half-width of the Gaspari–Cohn function. Radar
observations were localized to 3 km in the vertical. Satellite
radiances were not localized vertically. Lastly, a sampling
error correction (Anderson, 2012) was applied. We assim-
ilated all observations, including those that were far from
the first guess, as we noticed a relatively strong error reduc-
tion by these observations in our experiments. It should be
noted, however, that real NWP systems might require such
a first-guess check to exclude erroneous observations.

The horizontal distribution of observations was cho-
sen to be equal for all observation types. In the horizon-
tal, we assimilated observations every 10 km. However,
we did not assimilate observations within 50 km of the
domain boundary, so that only observations of the inner
300 × 300 km were assimilated. This was necessary to
avoid discontinuous increments at domain boundaries,
since we assumed a periodic WRF domain but a limited
area domain in DART. In the vertical, we assimilated radar
reflectivity observations every 2 km from 2–14 km.

Superobbing can be a useful approach to assimilate
high-resolution observations, as it averages observations
towards the resolved scale of the model. However, an
experiment that superobbed 5 × 5 grid-scale observations
towards one observation every 10 km did not generally
improve forecasts. Given the perfect-model assumption,
this might not be too surprising. Furthermore, we only

superobbed observations, but not the model prior follow-
ing the standard implementation in DART, which is not
fully consistent. As the difference in impact was negligible,
we decided not to include those experiments in this article.

The assimilation of satellite observations in a Gaussian
filter is suboptimal for reasons of non-Gaussianity, like
heteroscedasticity (the increase of variance with cloudi-
ness) or boundedness. Additionally, non-linear observa-
tions operators as well as sampling error and suboptimal
ensemble perturbations lead to a suboptimal analysis and
ensemble spread. These effects can be mitigated by assign-
ing inflated observation errors (Geer and Bauer, 2011), but
the optimal choice of assigned observation errors often
needs to be tested by sensitivity studies (see Section 3.3).

2.6 Assimilation experiments

The experiments of this study are listed in Table 1. To
investigate optimal assigned observation-error settings, we
conducted sensitivity experiments with different assigned
observation errors in Section 3.3. The resulting optimal
observation errors used for the standard experiments are
listed in Table 1.

The timeline of the experiments is illustrated in
Figure 8. In the random case, the forecast ensemble was
initialized at 0700 UTC and ran freely without assimilation
for 6 hr. By 1300 UTC, the model had generated a suffi-
cient amount of spread (Figure 7). From 1300–1400 UTC
we assimilated five times (every 15 min), followed by free
forecasts until 1800 UTC.

In the warm-bubble case, we started to assimilate at
1230 UTC after a free forecast of 30 min. Despite this short
spin-up time, the deep convection had already developed.
From 1230–1330 UTC we assimilated five times, followed
by free forecasts until 1800 UTC. Although the assimila-
tion window is 1 hr in both cases, it covers different phases
of convection in each case.

Figure 9 shows the time series of the strongest cloud
signal in each observation type, that is, the lowest value

T A B L E 1 Experiments and their assimilated variable together with standard errors for generating observations (instrument error) and
assimilating observations (assigned error).

Abbreviation Assimilated observation type 𝝈 generate 𝝈 assimilate (range of tested values)

VIS Visible reflectance 0.6 μm 0.03 0.03 (0.03–0.12)

WV62 Brightness temperature 6.2 μm 1 K 1 K (1–3)

WV73 Brightness temperature 7.3 μm 1 K 1 K (1–3)

REFL Radar reflectivity 10 cm 2.5 dBz 2.5 dBz (2.5–7.5)

NoDA None – –

Note: The range of tested values for the assigned error is indicated in parentheses.
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10 KUGLER et al.

F I G U R E 8 Timeline of forecasts and assimilation in the
“random” and “warm-bubble” cases.

F I G U R E 9 Time series of the strongest cloud signal in each
observation type, defined as the average of the 40 (0.1%) largest
values of reflectance and lowest values of BT. Values are scaled to
the range 0–1 from their respective ranges: 0.27–1 for visible
reflectance; 235–205 K for 6.2-μm BT; 255–205 K for 7.3-μm BT;
15–70 dBz for radar reflectivity. The assimilation time frame is
shown as a grey background. [Colour figure can be viewed at
wileyonlinelibrary.com]

for infrared BT and the highest value for visible and radar
observations. The earliest stages of convection were only
detected by visible observations. For radar, it took up to
60 min for convection to become apparent in the observa-
tions. In the “random” case, all observation types detected
convection at the start of the assimilation window. In the
warm-bubble case, however, infrared channels did not
detect convection at the beginning of the assimilation, but
later in the assimilation window. Overall, the warm-bubble
case was more predictable. A measure of uncertainty is
the time duration between earliest and latest convective
initiation in the ensemble. While the time difference of

convective initiation was 1.5 hr in the “random” case, the
initiation happened within 20 min in the “warm-bubble”
case (not shown). This demonstrates that adding a warm
bubble can act to synchronize the triggering time of con-
vection across the ensemble, since it forces convection
regardless of the stratification.

3 RESULTS

The first goal in this section is to estimate how forecasts
of precipitation and cloudiness benefit from assimilating
cloud-affected satellite observations (Section 3.1). Subse-
quently, we analyze the impact on vertical profiles of
state variables in Section 3.2. Lastly, we try to explain the
larger impact of 3D radar observations compared with 2D
satellite observations in the case of random convection in
Section 3.3.

3.1 Relative potential impact

We evaluate forecasts using the Fractions Skill Score (FSS)
for three quantities:

• precipitation rate > 1 mm⋅hr−1

• radar reflectivity > 50 dBz,
• visible reflectance > 0.6,

The 24-km window FSS of these quantities describes
how well a forecast was able to pinpoint the location of
precipitation and optically thick clouds. We calculated
the FSS using neighborhood ensemble probabilities after
Schwartz et al. (2021), in contrast to, for example, Scheck
et al. (2020), who calculated the FSS from the ensemble
mean.

3.1.1 Case “random”

Figure 10a shows the impact of assimilating four dif-
ferent observation types in the case with deep convec-
tion scattered randomly throughout the whole domain.
Compared with the REFL experiment and averaged over
1400–1700 UTC, the VIS experiment revealed an FSS
improvement of 50% compared with the FSS of noDA, the
WV73 experiment 79%, and the WV62 experiment 20%
for the prediction of radar reflectivity >50 dBz. Within the
first forecast hour, the VIS experiment performed nearly
as well as the REFL experiment but lost impact there-
after. The WV73 experiment showed similar skill to the
VIS experiment in the first 1.5 hr lead time, but provided
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KUGLER et al. 11

(a) random case

(b) warm-bubble case
F I G U R E 10 Fraction skill score for precipitation >
1 mm⋅hr−1; radar reflectivity > 50 dBz and visible reflectance > 0.6
in (a) the “random” case and (b) the warm-bubble case. The
assimilation time frame is marked by grey shading. [Colour figure
can be viewed at wileyonlinelibrary.com]

better forecasts afterwards. The WV62 experiment’s fore-
cast skill was the lowest of all observation types. It seems
that channels that see deeper into the atmosphere (visible
and 7.3 μm) have a higher impact than the 6.2-μm channel,
which does not sense lower tropospheric vapor and clouds.
Overall, forecasts in the REFL experiment were best, with
2.5 hr of skillful forecasts for light precipitation and 1.5 hr
for strong precipitation, except for the prediction of visi-
ble reflectance>0.6, where forecasts of the VIS experiment
were slightly better.

In Figure 11a, we show the root-mean-square error
(RMSE) of visible reflectance and 7.3-μm brightness tem-
perature forecasts, relative to the RMSE of the noDA
experiment. Specifically, we computed the RMSE of the
ensemble mean forecast over all 200 × 200 grid points,
while only 31 × 31 satellite observations were assimilated.
At analysis time, the experiment that assimilated visible
reflectance had the lowest errors in visible reflectance,
as expected. The same applies to the WV73 experiment
and the verification of 7.3-μm BT. After the analysis, how-
ever, the RMSE of the WV73 experiment was similar to
the error of the REFL experiment. The experiments REFL,
VIS, and WV73 overall showed similar skill in predicting
the visible channel, while the WV62 experiment had lower
skill in the first 1.5 hr. The VIS experiment had relatively
good forecasts of 7.3-μm BT and the WV73 experiment had
good forecasts of visible reflectance. The WV62 experiment
had less accurate forecasts of both 7.3-μm BT and visible
reflectance, which is presumably related to the higher peak
of its weighting function leading to smaller sensitivity to
low and mid-level clouds.

3.1.2 Case “warm bubble”

Figure 10b shows the forecast impact in terms of FSS, but
now for the warm-bubble case. In general, all observa-
tion types lead to a significant FSS improvement compared
with the noDA experiment, but some aspects should be
noted. First, the assimilation of visible reflectance in the
VIS experiment improved the FSS faster than the assimi-
lation of infrared BT in the experiments WV62 and WV73.
As visible reflectance detected convection at an early stage
(Figure 9), the VIS experiment was at a clear advantage.
The initially high impact in the VIS experiment deterio-
rated in the first forecast hour, handing over the lead to
the REFL experiment. However, the VIS experiment over-
took the REFL experiment again at around 3 hr lead time
in precipitation scores. Second, the experiments WV62
and WV73 produced similar results, except for the FSS
of cloudiness (visible reflectance > 0.6), where most of
the impact vanished within 30 min of free forecast in the
WV62 experiment. Note that the 6.2-μm channel is more

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.4577 by U
niversität W

ien, W
iley O

nline L
ibrary on [30/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

34



12 KUGLER et al.

(a) random case

(b) warm-bubble case
F I G U R E 11 RMSE of ensemble mean forecasts of the visible
(upper panel) and 7.3-μm channel (lower panel), normalized by the
RMSE of the noDA control run for (a) the “random” case and (b) the
warm-bubble case; the average is taken horizontally over 200 × 200
grid points. The assimilation time frame is marked by grey shading.
[Colour figure can be viewed at wileyonlinelibrary.com]

sensitive to higher tropospheric water vapor, while the
7.3-μm channel is more sensitive to lower tropospheric
water vapor. Third, the experiments REFL and VIS show
a similar performance except for the first hour, where
the skill was slightly lower for precipitation. Interestingly,
the VIS experiment only shows an advantage over the
REFL experiment in the FSS for cloudiness during the first
2.5 hr. For cloudiness, both the REFL and the VIS experi-
ment gave similar performance. Compared with the REFL
experiment, the experiments WV62 and WV73 showed
less impact. Lastly, the REFL experiment outperformed all
other observation types in the first forecast hour for light
and strong precipitation but only slightly for cloudiness,
where the VIS experiment was best most of the time.

Figure 11b shows the RMSE of forecasts of visible
reflectance and 7.3-μm BT for the warm-bubble case. Visi-
ble reflectance was best forecast by the REFL experiment,
followed by the VIS experiment with similar forecast score,
except for the first forecast hour. The experiments WV62
and WV73 performed worse, as they removed less error
until the last assimilation time. While the experiments
REFL and VIS removed up to 30% of error, the experi-
ments WV62 and WV73 removed only 15–20% of visible
reflectance error. Also 7.3-μm BT was best forecast by
the REFL experiment, removing 40% of RMSE until the
last assimilation time. Other experiments removed similar
amounts of error, but lost impact faster. On average, the
VIS experiment had the second best RMSE in 7.3-μm BT,
followed by WV62 and WV73.

3.1.3 Comparison of cases

A major difference between the two cases is that the
warm-bubble case is more predictable than the “ran-
dom” case. While the REFL experiment skillfully predicted
strong precipitation for nearly 4 hr (FSS > 0.5) in the
warm-bubble case, the random case was skillfully pre-
dicted for only 1.5 hr. The difficult forecasting conditions
probably result from faster growth of errors in the “ran-
dom” case, as storms interact with each other and contin-
uously trigger new cells, leading to a chaotic environment
which is very sensitive to the initial conditions.

To compare the relative impact of the observation
types, Table 2 shows the relative FSS improvement over
noDA of each experiment compared with the REFL exper-
iment. Overall, satellite observations lead to a remarkable
impact given that the satellite experiments assimilated
only 1/7th of the number of observations compared with
the REFL experiment. Table 2 also demonstrates that satel-
lite and especially visible observations can be effectively
used by the ensemble adjustment Kalman filter and lead
to long-lasting forecast impact.
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KUGLER et al. 13

T A B L E 2 Fraction of each experiment’s FSS improvement
over noDA, relative to the REFL experiment in the respective case,
that is, (FSSexp - FSSnoDA)/(FSSREFL - FSSnoDA) for the event of
reflectivity > 50 dBz, where FSS is averaged over the first three
forecast hours.

Experiment
Case
“random”

Case
“warm-bubble”

REFL 100% 100%

REFL-2D 64% -

VIS 50% 88%

WV73 79% 74%

WV62 20% 76%

Visible observations detect convection earliest and
allow the filter to narrow down the location of convec-
tion much earlier than other observations can. To date,
only Schröttle et al. (2020) compared the assimilation of
visible (0.6 μm) and infrared observations (6.2 μm) in a
convective-scale NWP model. Despite the similar setup, we
clearly see more impact from assimilating visible obser-
vations than from 6.2-μm BT observations. This contrasts
with Schröttle et al. (2020) who found stronger impact
from the 6.2-μm channel and less impact from visible
observations. However, this difference might be related
to overly inflated observation errors for visible obser-
vations in that study, as they inflated the observation
error for visible much more than for infrared observa-
tions, which presumably led to a lower weight for visible
observations.

Although the WV62 experiment showed competitive
forecasts of precipitation in the warm-bubble case, it per-
formed poorly in forecasting cloudiness in both cases and
precipitation in the “random” case (Figure 10). This might
be due to the higher peak of the weighting function of the
6.2-μm channel compared with the 7.3-μm channel.

In the warm-bubble case, the uncertainty lies mostly
in the warm-bubble location and strength. As the eval-
uation showed, these can be easily derived from satel-
lite observations. In the “random” case, however, visi-
ble and 6.2-μm BT observations lead to substantially less
impact. We hypothesize that a possible explanation might
be missing the vertically resolved information from radar
observations. This hypothesis is investigated further in
Section 3.3.1 by assimilating two-dimensional instead of
three-dimensional radar reflectivity. Except for the higher
impact of radar in the warm-bubble case, however, the
experiments overall reveal the value of satellite and par-
ticularly visible observations, especially in scenarios with
an uncertain location of convection. Figure 12 illustrates
how assimilating visible reflectance improved the forecast
of the location of clouds in the ensemble.

(a) noDA (b) VIS

(c) noDA (d) VIS

F I G U R E 12 The probability for visible reflectance > 0.5,
(a,c) in the noDA run and (b,d) after the assimilation in the VIS
experiment. The ensemble-derived probability ranges from black
(0) to white (1) and the nature ((xnat) > 0.5) is shown in red
contours. The warm-bubble case at 1335 is shown in (a,b). The
“random” case at 1405 is shown in (c,d). [Colour figure can be
viewed at wileyonlinelibrary.com]

3.2 Impact on model state variables

In the OSSE framework, we can compare how different
observation types impact the prior model state as the true
state is perfectly known. To do that, we analyzed the verti-
cal structure of the increments (Figure 13) and error/error
reduction (Figure 14).

Figure 13 shows the vertical profiles of the absolute
ensemble-mean increments, averaged spatially and over
the five assimilation times. Panels 13a and 13b show the
increments of the warm-bubble case and the random case,
respectively. In the warm-bubble case, the temperature
increments of experiments VIS and REFL are substan-
tially lower than those of WV62 and WV73. Interestingly,
WV73 shows larger increments than WV62 below 7 km,
while above this the relation is reversed. In the random
case, WV62 and WV73 produced very similar tempera-
ture increments. Concerning water vapor, the experiments
WV62 and WV73 lead to higher increments than VIS and
REFL in the warm-bubble case, but not in the random
case, where most profiles are similar. The largest incre-
ments in vapor can be seen in the WV73 experiment and
the lowest increments in the VIS experiment. Regarding
the increments of cloud water, the VIS experiment again
revealed the smallest increments in both cases, while the
other experiments do not differ substantially in increment
magnitude. Cloud ice increments are also similar among
the experiments except for the VIS experiment. Wind
increments are strongest for WV62 and WV73 and smallest
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14 KUGLER et al.

(a) Case "random"

(b) Case "warm-bubble"
F I G U R E 13 Vertical profiles of the absolute ensemble-mean increments for model variables temperature (T), vapor mixing ratio
(QVAPOR), cloud water and ice mixing ratio (QCLOUD and QICE), and wind speed (V); averaged horizontally and over five assimilation
times. [Colour figure can be viewed at wileyonlinelibrary.com]
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KUGLER et al. 15

(a) Model variable poten�al temperature (b) Model variable vapor mixing ra�o

(c) Model variable cloud water mixing ra�o (d) Model variable cloud ice mixing ra�o
F I G U R E 14 Vertical profiles for model variables temperature (top left), vapor mixing ratio (top right), cloud water, and ice mixing
ratio (bottom left and right). Each panel shows the MAE of the noDA experiment (left), the MAE reduction in the experiment (center), and
the relative MAE reduction in % of the noDA MAE (right). Negative values stand for lower errors in the assimilation experiments compared
with noDA. The right panel shows the change in MAE, relative to the prior MAE. The error was evaluated at 1405 in the “random” case, as
mean (over 961 observed atmospheric columns) absolute error of the ensemble mean forecast. Dots indicate the horizontal average, shading
indicates the 95% confidence interval over 961 atmospheric columns in which observations were taken. The increments of neighboring
observations were overlapping and thus not independent. [Colour figure can be viewed at wileyonlinelibrary.com]
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16 KUGLER et al.

for VIS. Generally, the increment profiles are more similar
in the “random” case, while in the “warm-bubble” case,
the increments of the experiments VIS and REFL differ
from WV62 and WV73, especially for temperature, vapor,
and wind. Furthermore, we see that the visible reflectance
observations, while less sensitive to ice clouds, still lead
to increments in cloud ice. Lastly, note that the magni-
tude of increments in the “warm-bubble” case is lower
due to the large clear-sky area, where hydrometeor-related
observations contain little information.

Figure 14 shows vertical profiles for temperature (top
left), vapor mixing ratio (top right), cloud water, and ice
mixing ratio (bottom left and right). Each panel shows the
mean absolute error (MAE) of the noDA experiment (left),
the MAE reduction in the experiment (center), and the
relative MAE reduction in % of the noDA MAE (right).
The error was evaluated at 1405, five minutes after the
last assimilation in the “random” case, as mean (over
961 observed atmospheric columns) absolute error of the
ensemble mean forecast. The corresponding increments
can be seen in Figure 13a.

The temperature error profile (Figure 14a) shows four
peaks: at the surface, 5, 8, and 13 km. The error reduc-
tion was largest in these layers in absolute and rela-
tive terms. The experiments WV62 and WV73 removed
nearly as much temperature error as the REFL experi-
ment, reaching up to 0.5 K and 40% of error. The VIS
experiment also reduced the errors, but reaches only 0.2 K
and 25%.

Regarding water vapor (Figure 14b), the relative error
reduction was largest at altitudes with low vapor con-
centration, reaching 40% at 7 km but still removing 20%
in the boundary layer. The experiments VIS and WV73
reduced the errors by a similar amount, except above
6 km, where the WV73 experiment shows a larger error
reduction. The WV62 experiment, however, was worse
than WV73 and increased the error at altitudes between
1 and 3 km.

Somewhat surprisingly, the vertical distribution of
cloud water (WRF’s QCLOUD variable) was not gener-
ally improved (Figure 14c). Most layers show increased
errors compared with the noDA experiment. Only the layer
with the highest errors shows slightly reduced errors in
the REFL experiment, which assimilated radar observa-
tions. Note that radar is mostly blind to cloud droplets.
The largest error increase occurred for WV62, the least
for REFL. Although the vertically resolved MAE of cloud
water did not improve, the FSS and RMSE evaluation
(Figures 11 and 10) showed that forecasts of cloudiness
were improved overall when the vertical distribution of
hydrometeors was not considered.

The vertical distribution of cloud ice (QICE) improved
between 10 and 12 km. Reductions reached 0.01 g⋅kg−1

(40%) in the experiments assimilating 6.2 or 7.3 μm, but
were less in the VIS experiment. Below 10 km the errors
were increased.

In summary, there are overall improvements in tem-
perature and water vapor, except for low-level water
vapour in the experiment assimilating 6.2-μm BT. The
vertical distribution of clouds was not improved despite
the sensitivity of the observations to clouds and despite
the improvements in terms of cloudiness revealed in
the last section. Our explanation is that the assimilation
improves the model equivalents but does not necessar-
ily improve the vertical distribution of model hydrome-
teors, as the observations only see the uppermost part
of clouds. Additionally, visible observations do not pro-
vide any information on the height of the observed cloud.
Infrared observations provide information on cloud-top
height, but a semi-transparent high cloud can lead to the
same observed value as an optically thick cloud at a lower
altitude. This means it is not necessary for the cloud to
have the correct vertical structure and be at the correct
height in order to reproduce observations. Instead, exist-
ing ensemble perturbations will be scaled up or down
depending on the ensemble correlation between the state
variable and the observation. This deficiency, however,
may be overcome to some extent when multiple satel-
lite channels with different sensitivities are assimilated
together.

3.3 Sensitivity tests

3.3.1 Why radar outperforms satellite
observations

A prominent detail in the results is that radar obser-
vations have an advantage over satellite observations in
the random case, but not so much in the warm-bubble
case. Given the differences between the cases, we hypoth-
esized that the advantage of radar observations comes
from their vertical resolution. To test this hypothesis,
we computed a two-dimensional grid of radar observa-
tions similar to the two-dimensional satellite observa-
tions by projecting the three-dimensional radar observa-
tions onto a two-dimensional grid. The projection used
the maximum reflectivity of each grid column, as maxi-
mum column reflectivity is a common tool for operational
forecasters and sometimes also used for data assimila-
tion. The result of assimilating this two-dimensional radar
(Figure 15) shows a forecast that is relatively similar to
experiments that assimilated satellite observations, indi-
cating that vertically resolved observations are indeed cru-
cial in the “random” case in order to reach a high forecast
skill.
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KUGLER et al. 17

F I G U R E 15 Fraction skill score of forecasts assimilating
two-dimensional radar reflectivity instead of three-dimensional
radar reflectivity in the random case. The assimilation time frame is
marked by grey shading. [Colour figure can be viewed at
wileyonlinelibrary.com]

3.3.2 Additional update variables

Radar reflectivity is mostly sensitive to large precipitating
hydrometeors, which can be found in the model vari-
ables QRAIN, QGRAUP, and QSNOW . Therefore, it may
be necessary to update these variables in order to improve
the analysis towards the observations. After the analy-
sis, however, hydrometeors will naturally adjust given
unstable and moist conditions. To reduce complexity, we
chose not to update the large hydrometeor variables in
the main experiments listed in Table 1, but to investi-
gate the impact in a sensitivity experiment. As shown in
Figure 16, additionally updating these variables does not
generally improve forecasts for more than 20 min after
the analysis. Furthermore, there is an indication that the
vertical distribution of water vapor between 1 and 4 km
is negatively affected by updates of large hydrometeors
(not shown).

3.3.3 Assigned observation-error variance

We tested a range of constant values (Table 1) for the
assigned observation error in order to find the observation

F I G U R E 16 Fraction skill score of forecasts assimilating
three-dimensional radar reflectivity, with (REFL+mpvars) and
without updating large hydrometeors (REFL) in the random case.
The assimilation time frame is marked by grey shading. [Colour
figure can be viewed at wileyonlinelibrary.com]

errors that performed best in terms of the FSS. Figure 17
shows the sensitivity of the FSS (of light precipitation) for
the increased assigned observation errors. Increasing the
observation error never improved the results. Assigning
the instrument error as observation error gave best results
for all observation types. As there were seven times more
radar observations than satellite observations due to its
vertical resolution, radar had a higher combined weight
in the assimilation. Nevertheless, assigning less weight
(increased error) did not lead to improved forecasts. Dou-
bling the assigned error removed its advantage compared
with other experiments and led to a forecast impact that
was mostly between the experiments WV73 and VIS, yet
still higher than the WV62 experiment after 1630 UTC.
Cloud-affected BTs of 7.3 μm show much larger first-guess
deviations than in the 6.2-μm channel, a possible reason
why assigning 2 K led to better forecasts after 3-hr lead
time.

3.3.4 Dynamic observation errors

For infrared satellite observations, the first-guess depar-
tures increase with the occurrence of clouds, mainly due
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(a)

(b)

(c)

(d)

F I G U R E 17 Fraction skill scores for light precipitation
(>1 mm⋅hr−1) in the warm-bubble case using assigned observation
errors of 1–3 times the instrument error for observations of (a) visible
reflectance, (b) 6.2-μm infrared BT, (c) 7.3-μm infrared BT, and (d)
radar reflectivity. The assimilation time frame is marked by grey
shading. [Colour figure can be viewed at wileyonlinelibrary.com]

to misplacement of clouds (Harnisch et al., 2016). Follow-
ing Geer and Bauer (2011), this error can be considered
to be part of the observation error. Thus, assigning con-
stant observation errors can be suboptimal, especially for
7.3-μm BT, which shows the largest first-guess departures.
We tested the dynamic observation-error model of Har-
nisch et al. (2016) but found the results to be substan-
tially worse than using constant observation errors. This
is in contrast to Schröttle et al. (2020), who successfully
applied the dynamic model for the 6.2-μm channel, but
used the ICON model and an LETKF assimilation sys-
tem instead of the WRF model with the EAKF in our
study. A possible explanation could be underestimated
ensemble spread together with the inflated observation
error, which would lead to negligible weights for observa-
tions. However, it seems that the prior error variance was
well estimated in the warm-bubble and “random” cases
(Figure 18), although a small deviation from the ideal rela-
tionship can be seen. Nevertheless it should be noted that a
dynamic observation-error model refined for the scenarios
investigated in our study and the WRF EAKF system may
still lead to higher impact of infrared observations than in
our comparison.

(a) Case "random"

(b) Case "warm-bubble"
F I G U R E 18 Spread error relationship for both cases. Spread2

is the prior ensemble variance, averaged over observations. RMSE is√
⟨(H(xb) −H(xnat))2⟩, where xb is the prior, xnat nature, and ⟨⋅⟩ the

average over observations. Numbers in the dots refer to the number
of the cycle. In order to use one axis for different observation types,
we rescaled by dividing by the maximum RMSE for each observation
type. [Colour figure can be viewed at wileyonlinelibrary.com]

4 CONCLUSIONS

This study presents the first direct comparison of the
assimilation of visible and infrared satellite observations
with that of radar reflectivity observations and the first
study assimilating visible observations using the ensem-
ble adjustment Kalman filter (EAKF) on the convective
scale. We assimilated synthetic observations of 0.6-μm vis-
ible reflectance as well as 6.2- and 7.3-μm infrared bright-
ness temperature and radar reflectivity in an idealized
perfect-model OSSE. The forecast impact was evaluated in
two weather situations: first a “supercell” case in which a
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warm bubble of 30-km diameter initiated a single supercell
storm and second a case where multiple deep convec-
tive cells at different stages are scattered throughout the
domain. The periodic boundary domain of 400 × 400 km2

size was simulated using a 2-km resolution WRF model,
which was used in identical configuration for the forecast
as well as the nature run. The observations were assim-
ilated five times (every 15 min) within 1 hr, during the
growth and consecutive mature stage of convection.

4.1 Main findings

(1) The EAKF is able to draw crucial information from
satellite observations despite the nonlinear observa-
tion operators, and their assimilation substantially
improves the subsequent forecasts of precipitation
and cloudiness. Furthermore, we demonstrate that
visible satellite observations can be considerably
more beneficial than previously reported by Schröttle
et al. (2020), reaching an impact of 88% of the impact
of three-dimensional radar observations and also out-
performing the assimilation of thermal infrared satel-
lite observations.

(2) Visible and infrared satellite observations can have an
impact on forecasts of convective precipitation that is
comparable to the impact of radar reflectivity obser-
vations. Given favorable conditions, that is, when
the stage of convection is correct in the prior and
only the location is uncertain (“warm-bubble” case),
the assimilation of satellite observations strongly
improved the precipitation forecasts: visible obser-
vations lead to 88% of the radar impact, while the
vapor-sensitive channels at 6.2 and 7.3 μm lead to
74–76% of the radar impact. In more difficult con-
ditions, that is, randomly located storms at different
stages (“random” case), the relative impact was lower
but still reached 50% for visible observations, 20%
for 6.2-μm BT, and 79% for 7.3-μm BT. Assimilat-
ing two-dimensional (max-column) radar reflectivity
yielded 64% of the impact of three-dimensional radar
reflectivity assimilation.

(3) The differences between the simulated cases suggest
that the impact of visible reflectance and 6.2-μm BT
observations is highest when the uncertainty about
the vertical structure of clouds is lowest. The vertical
structure of clouds cannot be retrieved from a single
channel and thus is a weak spot for satellite observa-
tions. Comparing the “warm-bubble” and “random”
cases, we noticed that, in one case, the missing verti-
cal resolution of the assimilated satellite observations
did not seem to have a detrimental effect on subse-
quent forecasts. We hypothesized that the uncertainty
in the vertical distribution of clouds is responsible

for the reduced impact of satellite observations in the
“random” case. Experiments that only assimilated 2D
radar observations and withheld the vertical resolu-
tion of the radar data (Section 3.3) supported that
hypothesis. This result is in agreement with Sawada
et al. (2019), who found improved forecasts of isolated
cells in case of weak large-scale forcing by assimilat-
ing observations of 7.3-μm infrared BT.

4.2 Additional remarks

In order to generalize our results for operational numeri-
cal weather prediction, additional error sources need to be
considered, which have not been included in this study:
systematic model and operator errors (biases), representa-
tiveness errors, and correlated observation errors. While
Errico and Privé (2018) argued for the simulation of as
many error sources as possible, we refrained from that
to isolate particular aspects of assimilating cloud-affected
satellite observations (e.g., nonlinearity) and understand
better their potential impact on convective-scale fore-
casts in the absence of all complexities of a real system.
Zhang et al. (2016) suggest that the impact derived from a
perfect-model OSSE may deviate from that in real systems,
but the results are still very informative in a qualitative
sense. The impact of the observations in operational sys-
tems is likely lower in absolute terms due to additional
error sources that, for example, require an inflation of
observation errors. For this reason, our study focuses on
the impact of the observations relative to more commonly
assimilated radar observations, which can be assumed to
be less affected by the simplifications of the setup men-
tioned above.

The observation impact diagnosed from an OSSE
depends on the choice of observation error and ensem-
ble spread. In addition to a reasonable choice of obser-
vation error (Section 2.4) and spread (Section 2.3.2), the
statistics of first-guess departures support our OSSE setup.
The standard deviation of first-guess departures (for sin-
gle members and not the ensemble mean) was 4.5 K for
the 6.2-μm channel, 9.1 K for the 7.3-μm channel, and 0.22
for the visible channel at 1330. Compared with Harnisch
et al. (2016), these values indicate that our setup features
realistic departures and a case that is an even more difficult
situation for numerical weather prediction.

4.3 Outlook

Our results reveal that the prediction of deep convec-
tion could strongly benefit from the assimilation of visible
and infrared satellite observations. While the assimilation
of infrared observations has been investigated previously,
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very few studies have investigated the assimilation of vis-
ible observations up to now. Furthermore, radar observa-
tions are not available in many parts of the world or they
are of limited quality, for example, due to orography that
can obscure parts of the precipitation.

Despite recent progress in the effective assimilation of
satellite observations, numerous open challenges still need
to be addressed. The nonlinearity and non-Gaussianity of
the observations and the model call for improved algo-
rithms that allow non-Gaussian distributions, for example,
as proposed by Anderson (2010, 2020, 2022), and take
observation operator nonlinearity into account. Further-
more, the vertical resolution is a weak spot of visible and
infrared satellite observations. Different channels provide
information about different atmospheric levels as shown
by their correlation structures (Zhang et al., 2022). For
example, while the 6.2-μm channel is mostly sensitive to
upper tropospheric water vapor, the 7.3-μm channel sees
further down into the lower troposphere. Both channels
are sensitive to thin ice clouds, which makes them blind
to clouds below. The 0.6-μm visible channel can be cru-
cial here, as thin ice clouds are mostly transparent at this
wavelength (Scheck et al., 2020). Lastly, cloud height infor-
mation from window channels could be used to avoid
assigning clouds to the wrong levels in the model. The
combined assimilation of these different channels there-
fore has the potential to lead to a better vertical distribution
of the increments and subsequently a better forecast. First
experiments on this combined approach indeed revealed
promising results, and a follow-on publication that inves-
tigates how the combined assimilation of visible, infrared,
and radar observations affects the analysis increments and
forecast is currently in preparation.

4.4 Data and Software

Experiments were conducted using the Python package
available at https://github.com/lkugler/DART-WRF. This
allows us to define experiment workflows using DART
and WRF and contains routines to generate DART obser-
vation sequence files and a python-pandas interface to
analyze observation sequence files. DART was used in ver-
sion 10.5.3 with a slightly modified RTTOV interface with
constant radii for water droplets and ice crystals, as men-
tioned in Section 2.4. During the course of this study,
we improved the RTTOV interface in DART by remov-
ing a bug, which wrongly flipped cloud variables vertically
before DART v10.1.0. Other tools: RTTOV v13.3, WRF
v4.3. Python packages: xarray (Hoyer and Hamman, 2017),
metpy, matplotlib, dask, proplot. Supplementary data and
figures are published at https://doi.org/10.5281/zenodo.
7840304 (Kugler, 2023).
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Chapter 4

Combined assimilation of multiple satellite
channels

Overview

The second publication extends the impact assessment of the first publication to the
combined assimilation of multiple satellite channels (the second research goal in Section
1.4). It presents the first study that investigates the complementary value of the combined
assimilation of 6.2 µm and 7.3 µm infrared as well as visible observations for the analysis
of clouds and the forecasts of precipitation and other variables. Additionally, extensive
sensitivity studies for assimilation parameters are included. As in the first publication,
systematic model and operator errors are excluded.

Own contribution

Conceptualization, formal analysis, investigation, methodology, software, visualization,
writing. The author’s contribution to this publication is estimated to be about 80%.

Reference

Lukas Kugler and Martin Weissmann, 2024: The synergy of assimilating visible and in-
frared radiances and radar observations. Under review in Quarterly Journal of the Royal
Meteorological Society.
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Cloud-affected satellite observations in the visible and infrared
spectrum contain vast and largely complementary information
on clouds and atmospheric convection and thereby constitute
a promising data source for convective-scale data assimilation.
Preceding studies have demonstrated that the assimilation of
either one of these observation types can lead to improved
convective-scale weather forecasts, but research on the com-
bined assimilation of cloud-affected visible and infrared satel-
lite as well as radar observations is still very scarce. In this pa-
per, we investigate the combined assimilation of multiple in-
frared and visible satellite channels as well as radar observa-
tions and evaluate their analysis and forecast impact with a
primary focus on clouds and precipitation. We assimilate vis-
ible (0.6µm) and thermal infrared (6.2µm and 7.3µm) satellite
channels in observing system simulation experiments (OSSE)
with a perfect-model forecast for two idealized weather sce-
narios. Observations are synthetically simulated and assimi-
lated by the ensemble adjustment Kalman filter (EAKF). The
forecasts used the Weather Research and Forecasting (WRF)
model at 2-km grid resolution. Results show that assimilating
satellite channels in addition to radar reflectivity can improve
forecasts of cloudiness and precipitation while improvements
in temperature, humidity and wind fields are about the same

Abbreviations: BT, brightness temperature; CAPE, convective available potential energy; CIN, convective inhibition; EAKF, ensemble
adjustment Kalman filter; RMSE, root-mean-square error; CRPS, continuous ranked probability score; FSS, Fractions Skill Score.
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as in the radar experiment. The evaluation of the analysis error
for different cloud conditions revealed that the combined as-
similation can mitigate the ambiguity of individual visible and
infrared channels. Assimilating visible reflectance before in-
frared brightness temperature can remove pre-existing erro-
neous water clouds and avoid the introduction of erroneous
clouds by the following assimilation of infrared channels. It fol-
lows that the combined assimilation of visible and infrared ra-
diances could be crucial to avoid shortcomings of assimilating
only visible or infrared radiances in convective-scale numerical
weather prediction.

1 | INTRODUCTION1

Accurate forecasts and early warnings of severe weather are the primary goal of convective-scale numerical weather2

prediction. To achieve this, we need to correct km-scale errors in the initial conditions using km-scale observations, es-3

pecially in mid-level moisture, low-level temperature and wind (Fabry, 2010; Gustafsson et al., 2018). Although direct4

observations of these variables on the km-scale are scarce, not all hope is lost, as indirect remote-sensing observations5

are abundant. Visible and infrared instruments on geostationary satellites provide observations with high temporal6

resolution (10-15 min) and comparably high spatial resolution (e.g. up to ½ km for Meteosat Third Generation). Ad-7

ditionally, we can infer information about the km-scale thermodynamic environment through ensemble covariances8

when applying an ensemble Kalman filter (EnKF). Weather radars observe precipitating cores of convective clouds.9

However, their coverage is limited by mountains, constrained to highly populated and financially rich regions. In con-10

trast, satellites provide spatially homogeneous data quality and detect convection earlier than radars. Thermal infrared11

satellite channels measure water vapour and cloud-top temperature. Visible channels can see low-level stratus during12

daytime, even through thin high-level ice clouds. It is therefore not surprising that studies found a beneficial impact of13

assimilating all-sky infrared satellite observations on forecasts of typhoons, mesoscale convective systems, and other14

severe weather events (Jones et al., 2015, 2016; Honda et al., 2018; Sawada et al., 2019; Jones et al., 2020; Chan15

et al., 2020; Zhu et al., 2022).16

Ambiguity motivates combined assimilation17

Although a single-wavelength infrared radiance channel does not reveal the vertical structure of clouds, we can learn18

much from the complementary information of different wavelengths. A single infrared observation can be ambiguous,19

as cirrus clouds may lead to the same observed signal as deep convective cumulonimbus clouds. Visible observations20

can also be ambiguous, as a shallow convective cloud can lead to the same signal as a cumulonimbus cloud. However,21

the combination of visible and infrared observations can provide complementary information: Visible observations can22

determine whether there are low-level water clouds below the ice cloud that is seen in the infrared, while infrared23

channels can determine whether the cloud seen in the visible channel is shallow or deep. Similarly, satellite channels24

can complement the assimilation of radar reflectivity, as C/S-band radars don’t detect clouds without precipitating25

hydrometeors. Thus, the combination of information from different observation types could potentially mitigate the26

ambiguity of the information from a single observation type and leverage our ability to infer details on the vertical27
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structure of clouds.28

Combining the information of different wavelengths can, however, be challenging. The efficacy of the combined29

assimilation depends on the assimilation algorithm and also on its ability to account for correlated observation errors30

of spectrally close channels. Some preceding studies assimilated multiple infrared channels (Bormann et al., 2016;31

Johnson et al., 2022), but most selected only one channel (Honda et al., 2018; Okamoto et al., 2019; Zhang et al., 2019;32

Zhu et al., 2022) and thereby avoided inter-channel observation error correlations. However, by selecting channels in33

a distinctly different spectral range as e.g. visible and infrared, the inter-channel error correlations can be expected34

to be relatively low while the channels provide very complementary information. Infrared radiances from 6.2µm to35

7.3µm provide information about the vertical distribution of moisture and are sensitive to different but overlapping36

parts of the atmospheric state. Considering 6.2 and 7.3µm brightness temperature (BT), the least difficulty appears37

in the clear-sky assimilation as the 6.2 µm channel is sensitive to upper tropospheric water vapour, while the 7.3 µm38

channel senses lower tropospheric water vapour. Moreover, low clouds (below 600 hPa) are hardly observed by the39

6.2 µm channel, which leads to a distinct response in 7.3µm BT without a response in 6.2µm BT. However, mid or40

high clouds are sensed by both channels, making it hard to distinguish between deep convective clouds and cirrus41

clouds.42

Assimilating cloud-affected visible and infrared observations in an ensemble Kalman filter is challenging, but most43

of the associated challenges occur similarly for the more common assimilation of radar observations. The limited44

numerical representation of cloud processes and hydrometeors, as well as simplifications of observation operators,45

can lead to systematic differences between the observations and their model equivalents (Geiss et al., 2021). We46

avoided these issues by using an observing system simulation experiment (OSSE) with an identical model for the nature47

run and forecasts, as well as perfect observation operators in the forecast. This allows us to focus on the remaining48

challenges induced by e.g. dealing with nonlinear observation operators and non-Gaussian error distributions.49

This paper extends the study (Kugler et al., 2023), in which infrared and visible channels were assimilated sepa-50

rately, to the combined assimilation of visible reflectances, infrared brightness temperature (BT) and radar reflectivity51

observations. We investigate to which extent visible, infrared and radar observations complement each other in the52

assimilation to improve (i) the analysed vertical distribution of clouds and (ii) the forecast of precipitation and clouds53

by assimilating 0.6µm visible reflectance in addition to 6.2 and 7.3µm infrared BT and S-band radar reflectivity.54

Section 2 reviews the setup of the observing-system simulation experiments. In Section 3, we define the veri-55

fication metrics and introduce the OSSE experiments. Section 4 presents the results of the experiments as well as56

comprehensive sensitivity-tests. Section 5 concludes the paper with a summary of the main findings.57

2 | METHODS58

To answer our research questions, we employ a set of observing system simulation experiments (OSSE) building upon59

the configuration of Kugler et al. (2023). In the following, we briefly review the setup.60

2.1 | Observations, modelling and assimilation61

The observing system simulation experiment62

The forecast ensemble as well as well as the nature run use the Weather Research and Forecasting model (WRF)63

version 4.3 (Skamarock et al., 2021) in identical configurations. The model domain consists of 200 x 200 x 50 mass64

grid points with a 2 km horizontal resolution and a layer depth of 25-500 m with horizontally periodic boundary65
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Observation type Instrument error
Visible reflectance 0.6 µm (VIS) 0.03
Brightness temperature 6.2 µm (WV62) 1 K
Brightness temperature 7.3 µm (WV73) 1 K
Radar reflectivity 10 cm (REFL) 2.5 dBz

TABLE 1 Assimilated observation types and the respective instrument error standard deviation used for
simulating the observations.

conditions. The surface is idealized with homogeneous and flat terrain at 489 m altitude above sea level and the solar66

radiation resembles a summer day at 45◦ latitude.67

The observations68

Observations were generated as in Kugler et al. (2023) and are listed in Table 1. Satellite observations were simulated69

from theWRF output of the nature run using the Radiative Transfer for TIROS Operational Vertical Sounder (RTTOV)70

v13.3 (Saunders et al., 2018) with an effective particle diameter of 20µm for water and 60µm for ice particles. In-71

frared and visible radiances are parametrized using Chou-scaling (Chou et al., 1999) and MFASIS (Scheck et al., 2016),72

respectively. Radar reflectivity was diagnosed by WRF with Thompson microphysics. For both satellite and radar73

observations, random errors were added to the simulated observations according to Table 1. Both observations and74

their model equivalents were generated using the same observation operators to exclude systematic operator errors.75

The assimilation system76

We used the ensemble adjustment Kalman filter (EAKF) by Anderson (2001) implemented in the Data Assimilation77

Research Testbed (DART, Anderson et al. (2009), https://dart.ucar.edu) and a 40-member forecast ensemble to78

assimilate observations serially. Following the reference configuration of Kugler et al. (2023), we updated tempera-79

ture, water vapour mixing ratio, dry air mass in column, geopotential, three wind components, cloud water and ice80

mixing ratio. Including larger precipitating hydrometeor variables was tested in Kugler et al. (2023), but did not have81

a sustained positive impact on forecasts.82

To retain spread in our ensemble forecasts, we applied posterior inflation, i.e. relaxation to prior spread (RTPS),83

with different values for the relaxation factor α . The influence of observations was localised using a Gaspari-Cohn84

function with 20 km half-width in the horizontal (40 km radius of influence), similar to the 30 km correlation length85

for cloudy infrared radiance found by Zhang et al. (2022). Radar observations were localised to 3 km in the verti-86

cal. Satellite radiances were not localised vertically. Additionally, we applied the statistical sampling error correction87

(Anderson, 2012; Necker et al., 2020).88

We tested different values for the assigned observation error, startingwith the instrumental error that was used to89

simulate the observations, and then increased it. Additionally, one experiment (abbreviatedOE:ID) set the observation90

error variance to be the variance of first-guess departures minus ensemble variance:91

σ̂2
o =

1

T − 1

T∑
(yb − yo )2 − 1

T

T∑ 1

N − 1

N∑
(yb − yb )2, (1)

whereT is the number of observations and N is the ensemble size.92

In the horizontal, we assimilated observations every 10 km, except within the first 50 km from the domain bound-93
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ary, so that only observations of the inner 300 x 300 km were assimilated. In the vertical, we assimilated seven levels94

of radar reflectivity observations between 2-14 km.95

2.2 | Experimental set-up96

The assimilation impact was evaluated in two weather scenarios: The "random" case, in which supercells are triggered97

at random places by small random perturbations. Second, a "warm-bubble" case with localised convection and simple98

uncertainties in the location and strength of convection. Both cases share a highly unstable stratification with a CAPE99

of 2670 J/kg and a CIN of 26 J/kg at 7 UTC, such that relatively small perturbations trigger deep convection. For our100

simulations, time in UTC is equivalent to local solar time. Sections 4.1-4.3 evaluate experiments for the random case101

and section 4.4 evaluates experiments for the warm-bubble case.102

Simulated cases103

In the "random" case, storms are triggered at random locations scattered throughout the whole domain due to small104

random perturbations. We add two perturbations, following Bachmann et al. (2020); Schröttle et al. (2020): (1) Per-105

turbations to the vertical profile of temperature (σ=0.25K), wind (σ=0.25m/s), and humidity (σ=2%), which are auto-106

correlated in the vertical and horizontally constant; (2) random noise (σ=0.02K or m/s) added to temperature and107

vertical velocity in the lowest levels, horizontally uncorrelated. The nature run starts at 6 UTC and develops deep108

convection until 11 UTC. Both in the nature and in the ensemble, small random perturbations grow rapidly. The onset109

of deep convection varies by ±45minutes among the ensemble members.110

In the "warm bubble" case, a bell-shaped, 30 km wide, positive temperature increment (as in Kugler et al., 2023)111

is added to the initial temperature field in addition to the random perturbations. It triggers an isolated and well-112

organised supercell in a confined region of the domain and suppresses convection elsewhere, which makes this case113

more predictable than the "random" case. Adding the "warm bubble" at the same time across all ensemble members114

acts to synchronise the convective initiation and removes uncertainty about the life-cycle of the convective cloud.115

The timeline of assimilation and forecast is illustrated in Figure 1. In the random case, the forecast ensemble116

was initialised at 7 UTC, followed by a free forecast without assimilation for six hours. From 13 to 14 UTC, we117

assimilated five times (every 15minutes), followed by free forecasts until 18 UTC. In thewarm-bubble case, we started118

to assimilate at 12:30 after a free forecast of 30 minutes. Despite this short spin-up time, the deep convection had119

already developed. From 12:30 to 13:30 UTC, we assimilated five times, followed by free forecasts until 18 UTC. One120

experiment was conducted without data assimilation (abbreviated noDA). This experiment is used as a reference and121

as a scaling in the Fractions Skill Score.122

3 | VERIFICATION123

The assimilation experiments were evaluated with the four metrics described in the following.124

Observation-space verification125

To determine the fit to observations, the continuous ranked probability score (CRPS, e.g. Wilks, 2011) of visible126

reflectance and 7.3µmBTwas computed and comparedwith the CRPS of the noDA forecast. The CRPS compares the127

distribution of the forecast ensemble with the observed value and is, thus, more suitable for verifying non-Gaussian128

variables. The range of CRPS is 0-∞ and smaller values are better.129
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13 00 14 00

Free forecasts

7 00

"random" case

Nature run simulation

DA experiment

"warm-bubble" case

12 30 13 3012 00

Free forecasts

Nature run simulation

DA experiment

F IGURE 1 Timeline of assimilation and forecasts, reproduced from Kugler et al. (2023).

Definition Condition Sample size
water clouds LWP > 300 g/m² (but none above 6 km) and IWP < 5 g/m² 89
ice clouds LWP < 10 g/m² and IWP > 50 g/m² 235

water & ice-phase clouds LWP > 300 g/m² and IWP > 50 g/m² 139
TABLE 2 Definition of cloud categories; Total sample size: 1280 observed columns, separated by 20 km. Data
from five assimilation times; LWP: liquid water path, IWP: ice water path.

Model-space verification130

To assess the accuracy of the model variables temperature and water vapour mixing ratio, the root-mean-square error131

(RMSE)132

ε (x ) =
√√√

1

psf c − pt op

K∑
k

∆pk

M∑
i

(xi ,k − xnat
i ,k

)2 (2)

of the ensemble-mean forecast x to the true state xnat was computed over M=2002 columns and K=50 layers133

(weighted by pressure p). The relative error reduction compared to noDA is (εf − εnoDA )/εnoDA such that negative134

values indicate a reduced error.135

Verification of precipitation and cloudiness136

The forecast skill was evaluated using the ensemble Fractions Skill Score (FSS) of three forecast variables over a137

24 kmwindow: radar reflectivity > 50 dBz (strong convection), visible reflectance > 0.6 (cloudiness), and precipitation138

> 1 mm/h. The FSS was computed from neighbourhood ensemble probabilities (Schwartz et al., 2010; Necker et al.,139

2023). The relative FSS compares the FSS of an experiment to the reference experiment assimilating radar (REFL) and140

53



Kugler & Weissmann - manuscript for review 7

the control experiment, which does not assimilate observations (noDA)141

FSSrel = FSSexp − FSSnoDAFSSREFL − FSSnoDA . (3)

The relative FSS is defined using 3h-averages of FSS. The range (0-100%) defined by FSSnoDA and FSSREFL is 0.264-142

0.465 for radar reflectivity > 50 dBz (strong convection); 0.345-0.569 for visible reflectance > 0.6 (cloudiness); and143

0.351-0.594 for precipitation > 1 mm/h.144

Cloud-analysis verification145

To evaluate clouds in the analysis, we select the model columns which are observed from the nature run (961 obser-146

vations). From these, we select 256 columns, which are separated by 20 km (2× localisation radius) in order to reduce147

the correlation in the samples. This gives a total of 1280 samples over 5 analysis times. The columns are classified into148

three categories, depending on the clouds in the column: only water clouds, only ice clouds, or water and ice clouds149

(as defined in Table 2). For each category, we calculate the mean absolute error (MAE) reduction due to assimilation150

(posterior - prior),151

∆ε (z ) =
〈��{xa } − {xnat }

�� − ��{xb } − {xnat }
��〉, (4)

averaging (angle brackets) horizontally and over five different assimilation times. To avoid double penalty due to small152

vertical cloud misplacement, the forecast ensemble-mean x and nature are averaged over seven vertical levels in case153

of cloud variables.154

3.1 | Experiments155

To ensure that the reported results are as generally valid as possible, we tested a range of parameter settings. In156

Section 4.4, we compiled a complete list of experiments which were used in the sensitivity-testing. Sections 4.1-4.3,157

however, use selected experiments. Experiments are abbreviated by the observation types they assimilated, e.g. the158

experiment VIS+WV73 assimilated visible reflectance first and 7.3 µmBT second and by the RTPS inflation parameter159

α .160

1. The experiment VIS+WV73 (α=0.3) was used to show the effect of the combined assimilation of one visible and161

one infrared channel in Section 4.1;162

2. the experiment VIS+WV62+WV73 (α=0.3) represents the combination of one visible and two infrared channels163

(Section 4.2);164

3. and the experiment VIS+WV62+WV73+REFL (α=0.9, σ̂2
o=4σ2

o ) assimilates all four observation types including165

radar reflectivity observations (Section 4.3). The assigned observation error variance σ̂2
o is given as a multiple of166

the instrument error variance σ2
o .167

If not indicated otherwise, experiments used the standard configuration of RTPS(α=0.9) and no observation error168

inflation as in Kugler et al. (2023). The reference experiment without data assimilation is abbreviated noDA.169
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4 | RESULTS170

4.1 | Combination of visible and infrared channels171

Strengths and weaknesses of individual channels172

At first, we revisit the strengths and weaknesses of assimilating either visible or infrared radiances to get an idea of the173

potential benefits of their combined assimilation. Figure 2 shows the vertical profile ofMAE reduction (posterior-prior)174

in cloud water and ice concentration when assimilating either VIS or WV73 observations for three cloud categories.175

Although observation equivalentswere substantially improved (shown later), the vertical distribution of cloudswas not176

always improved, potentially due to vertical displacement errors resulting from the ambiguity of individual channels.177

The top left panel shows that water clouds below 6 km were improved more by assimilating visible reflectance178

(experiment VIS) than by assimilating 7.3µm infrared BT (experiment WV73), which can be expected as the visible is179

more sensitive to liquid than ice cloud and the 7.3µm channel’s weighting function peaks at 500 hPa. However, the180

assimilation of visible reflectance introduced erroneous clouds above 6 km leading to increased errors for both cloud181

water and ice (top left and right panel). The assimilation of 7.3µm infrared BT also led to some erroneous clouds above182

6 km, but the error increase was much smaller for both cloud ice and water than for assimilating visible observations.183

Presumably, the erroneous clouds in the experiment with visible observations are due to the ambiguity of the visi-184

ble channel, which can not discriminate between highly reflective low-level water clouds and highly reflective deep185

convective clouds. Therefore, the assimilation of visible reflectance introduced erroneous deep convective clouds in186

some instances. On the other hand, the infrared BT is capable of distinguishing high and low clouds. Correspondingly,187

the experiment assimilating 7.3µm BT (WV73) shows lower errors for high-level water and ice clouds.188

The center left panel shows that the experiment WV73 introduced substantial errors in cloud water, while ex-189

periment VIS did not. It seems that the assimilation of 7.3µm BT introduced erroneous clouds below the observed190

cloud tops because the observation does not contain information about the vertical extent of the cloud such that,191

e.g., a cumulonimbus can not be discriminated from a cirrus cloud. The visible channel, however, sees through thin192

ice clouds, which probably avoids erroneous increments of cloud water in the VIS experiment.193

The lower panel shows the error reduction in situations where both water and ice clouds were present, which194

mostly represents the core of deep convective clouds in our simulation. The assimilation of either visible or infrared195

observations led to improvements in both cloud water and ice. The error reduction for cloud water was larger in the196

experiment that assimilated visible observations, and the error reduction for cloud ice was larger in the experiment197

with infrared observations, as expected.198

Note that cloud ice increments from visible reflectance were, on average, about 35% smaller than from infrared199

BT (not shown), consistent with its lower sensitivity to ice clouds.200

Synergy of visible and infrared assimilation201

As discussed in the introduction, individual channels are ambiguous regarding the cloud structure, but the combination202

of channels provides complementary information and thereby reduces the ambiguity. To estimate the benefit of203

assimilating visible and infrared observations, we compare the MAE reduction of assimilating either VIS or WV73204

against the MAE reduction of assimilating both channels.205

The cloud analysis for the ice-cloud category (center panel of Figure 2) shows the synergy of visible and infrared206

assimilation. While experiment WV73 created erroneous water clouds, assimilating visible and infrared data (exper-207

iment VIS+WV73) reduced such erroneous clouds. In this category, the visible channel presumably can provide the208

information that no water clouds are present, as water clouds usually lead to higher visible reflectance than mostly209
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F IGURE 2 Cloud analysis verification. Vertical profile of MAE reduction (posterior-prior, Equation 4) of cloud
water and ice concentration for experiment VIS+WV73. Categories as defined in Table 2. Negative values indicate
error reduction. Shading indicates standard error.

semi-transparent ice clouds in this channel. This leads to the removal of spurious water clouds and a reduction of210

spread in cloud water, which hinders deterioration in cloud water by the assimilation of infrared observations after-211

wards. In case of water clouds below 6 km (upper panel), the analysis of VIS+WV73 reduces erroneous cloud ice212

compared to the experiment with only visible or only infrared observations but still shows a slightly higher error in213

cloud ice than first-guess. In case of both water and ice clouds in the column (lower panel), the cloud analysis of214

VIS+WV73 is more similar to the experiment assimilatingWV73, which has more accurate ice and less accurate water215

clouds. This means that the improvement of cloud water in VIS+WV73 is smaller than in VIS, but the improvement in216

cloud ice in VIS+WV73 is higher than in VIS and even higher than in WV73.217
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Figure 3 shows the forecast impact of the combined and separate assimilation of visible and infrared channels.218

Note that we used a different inflation parameter α (relaxation to prior spread) for the combined experiment as this219

setting led to improved scores for the combination. Further discussion on the sensitivity of the results to the relaxation220

parameter will be provided in section 4.4. The combined experiment VIS+WV73 was consistently better in terms of221

the FSS of precipitation and radar reflectivity (lower two panels) than each of the experiments assimilating a single222

channel. This suggests that the combined serial assimilation is able to leverage synergies of the channels, and the223

forecast skill is not just a mere average of the experiments VIS and WV73. Note that the combined assimilation224

improved forecasts without drawing the model-equivalents closer to the observations, as shown by the observation-225

space verification in the upper two panels.226

4.2 | Combination of one visible and two infrared channels227

Figure 4 shows that the additional assimilation of 6.2µmBT (comparing experiments VIS+WV73 andVIS+WV62+WV73)228

can improve forecasts of precipitation. However, the improvement depends on the background error inflation. With229

57



Kugler & Weissmann - manuscript for review 11

a small inflation parameter (α=0.3), the inclusion of 6.2µm BT led to an improved FSS on average over three hours230

(lower panels) but an increased error in temperature and humidity (upper panels). When the inflation parameter231

was increased (α=0.9), the temperature and humidity were improved compared to VIS+WV73. However, the FSS232

deteriorated due to spurious convection triggered by inflation. Turning the inflation off (α=0) improved the FSS of233

precipitation and cloudiness (lower panels) but increased the error of temperature and humidity (upper panels) and234

wind (not shown). Regardless of inflation, however, the combination VIS+WV62+WV73 outperformed experiments235

which assimilated either VIS, WV62, or WV73 only in terms of the FSS.236
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F IGURE 4 Timeseries of forecast scores, assimilating two infrared and one visible channel.

Assimilating multiple satellite channels generally improved the vertical distribution of clouds. Figure 5 evaluates237

the vertical distribution of cloud water/ice, comparing the assimilation of two channels (VIS+WV73) with the as-238

similation of three channels (VIS+WV62+WV73). A disadvantage of assimilating only the 7.3µm channel was the239

overestimation of water clouds when ice clouds were present (center left panel). Assimilating the visible channel in240

addition to both infrared channels showed a substantial reduction of mean absolute error instead of a worsening due241

to the assimilation of infrared BT. Likewise, the combined assimilation cured a weakness of visible channel assimilation242

in case of low water clouds (top right panel): While the assimilation of visible reflectance (experiment VIS) introduced243
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F IGURE 5 Cloud analysis verification. Vertical profile of MAE reduction (posterior-prior, Equation 4) of cloud
water and ice concentration when assimilating a combination of three channels. Categories as defined in Table 2.
Negative values indicate error reduction. Shading indicates standard error.

ice clouds on average, the additional assimilation of two infrared channels mitigated this adverse effect. Mixed results244

can be seen in the estimation of water clouds when only water clouds were present (upper left panel), and in the245

estimation of water clouds when water and ice clouds were present (lower left panel). In these cases, the additional246

assimilation of 6.2µm BT did not lead to improvements over the experiment VIS+WV73 in the cloud analysis (not247

shown).248
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4.3 | Combination with radar reflectivity249

Figure 6 shows how the additional assimilation of radar reflectivity affects the cloud analysis, comparing experiments250

VIS+WV62+WV73+REFL and VIS+WV62+WV73. In case of water clouds below 6 km, the additional assimilation of251

radar reflectivity partly removed erroneous clouds above 6 km (top left panel). Only radar assimilation (experiment252

REFL) did not introduce erroneous ice clouds. However, the additional assimilation of radar reflectivity (experiment253

VIS+WV62+WV73+REFL) could not remove the erroneous increments of ice clouds (top right panel) caused by visible254

channel assimilation. In case of ice clouds (center panel), the additional assimilation of radar reflectivity led to no255

substantial improvement in cloud water while assimilating satellite-only could remove erroneous water clouds. Hence,256

radar assimilation introduced erroneous water clouds and led to an overall neutral influence on water clouds in this257

case. In case of water and ice clouds (lower panel), there is no apparent change in MAE, given the variability of the258

error reductions.259

The forecast impact of additional radar assimilation is shown in Figure 7. The largest effect of the additional260

information can be seen in the accuracy of humidity (second panel). The experiment that assimilated radar only261

(REFL) or additionally (VIS+WV63+VW73+REFL α=0.9, 4σ2
o ) had a lower RMSE of humidity than the experiment that262

did not assimilate radar but did assimilate visible and infrared channels. The RMSE of temperature (top panel) was263

comparable in all experiments with the exception of the VIS+WV62+WV73 experiment without inflation (α=0), which264

had a higher RMSE of temperature. Among experiments with the same inflation value (α=0.9), the FSS of precipitation265

and cloudiness was better when radar was assimilated. When considering experiments with different inflation values,266

the experiment without inflation and radar (VIS+WV62+WV73, α=0) resulted in a better FSS but a higher RMSE of267

temperature and humidity. The effect of inflation is discussed in the next section.268

4.4 | Sensitivity to parameters269

An overview of the assimilation impact on forecast scores in various experiments is provided by Figure 8, which shows270

the analysis RMSE reduction (compared to noDA, Equation 3) of temperature, humidity, and wind, followed by 5-min271

posterior observation-space CRPS reduction (compared to noDA), and the 3-hr forecast averages. The last three272

columns show the time-averaged FSS of precipitation and cloudiness relative to experiments REFL and noDA. To273

understand the impact of the background error inflation, the order of assimilation, and the observation error inflation,274

we now discuss selected experiments of Figure 8 in detail.275

Inflation of the background error276

Inflating the background error had the largest impact among the tested parameters. Increasing the inflation to RTPS277

α=0.9 generally improved the analysis and forecast error of temperature, humidity, and wind at the cost of a deterio-278

rated (i.e. reduced) FSS of precipitation and cloud forecasts. Figure 9 shows the effect of increasing the background279

error inflation in the experiments VIS+WV73 and VIS+WV62+WV73 on temperature RMSE and precipitation FSS.280

In both experiments, the RMSE of temperature was improved with increased inflation. However, the FSS of precip-281

itation and cloudiness clearly deteriorated by increasing inflation. Increasing the inflation in experiment VIS+WV73282

from α = 0.3 over 0.5 to 0.9 decreased the relative FSS of all forecast quantities: from 106% to 82% to 64% for radar283

reflectivity; from 94% to 73% to 65% in visible reflectance; and from 105% to 90% to 76% in precipitation.284

The reason for the higher FSS in experiments with lower inflation may be seen in Figure 10 where forecasts from285

experiment VIS+WV62+WV73 with α=0 and α=0.9 are compared. The experiment with less inflation (left panel)286

had a higher FSS and less spurious convection than the experiment with inflation (right panel), as indicated by the287
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F IGURE 6 Cloud analysis verification. Vertical profile of MAE reduction (posterior-prior, Equation 4) of cloud
water and ice concentration when assimilating a combination of three satellite channels and radar reflectivity.
Categories as defined in Table 2. Negative values indicate error reduction. Shading indicates standard error.

lower forecast probabilities (black) in regions where no rain <1mm/h occurred. Additionally, inflation improved the288

ensemble consistency (Anderson, 1997) in rank histograms (not shown) and is advisable to apply in order to achieve289

accurate temperature, humidity and wind fields. However, additional inflation also led to spurious convection, while290

reduced inflation improved the FSS of precipitation and cloudiness.291

The order of assimilation292

Changing the order of assimilation from visible-infrared to infrared-visible only caused small differences in analysis and293

forecast errors (Figure 8, lines 9, 10; experiments VIS+WV73 and WV73+VIS, α=0.9). Although the analysis RMSE294
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of humidity was lower when infrared observations were assimilated before visible observations (5% error reduction295

in experiment WV73+VIS instead of 2% in VIS+WV73), differences in forecast errors of temperature, humidity, wind,296

radar reflectivity, and precipitation were negligible.297

Changing the order of assimilating VIS,WV62, andWV73 (Figure 8, lines 13, 15, 18; α=0.9) caused similarly small298

differences (<1 %pt. difference) in the analysis and forecast errors of temperature, vapour, wind, 7.3µm BT and the299

analysis errors of visible reflectance. Unsurprisingly, the forecast error reduction of visible reflectance was slightly300

increased from 4% to 7% when VIS was assimilated first. Large differences, however, were caused in the FSS scores,301

with the relative FSS of radar reflectivity increasing from 47% (line 13) and 59% (line 15) to 80% (line 18) when VIS was302

assimilated first. The same result could be seen in experiments without inflation (α=0, Figure 8, lines 14, 16). There,303

assimilating visible before infrared increased the relative FSS of radar reflectivity from 95% to 123%. Closer inspection304

revealed that the visible-first experiment VIS+WV62+WV73 led to a more accurate analysis of water and ice clouds305

(Figure 11) while assimilating infrared-first introduced errors in the humidity below 2 km (Figure 12). This suggests306
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F IGURE 8 Scorecard of experiments with error reductions compared to noDA (blue/red) and relative FSS (green).
Observation types are listed in the order of assimilation. α : strength of RTPS inflation, OE: observation error
variance inflation factor, ID: innovation diagnostics, dyn: following Harnisch et al. (2016), T: Temperature, QV: Water
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Columns 11-13: Relative FSS, Error: CRPS for VIS and WV73, RMSE for T and QV.
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F IGURE 9 The effect of background error inflation (RTPS α ) on 3-h forecast temperature RMSE (blue) and
relative FSS of REFL>50dBz (orange).

that assimilating visible reflectance before infrared radiance can improve cloud analysis and forecasts of precipitation307

and cloudiness. Due to its insensitivity to humidity, the visible channel is only influenced by clouds (and the surface),308

which allows us to correct cloud errors first before updating on other fields. Due to its ability to see through thin ice309

clouds, the visible channel can ascertain the (non)-existence of clouds below the ice cloud and consequently reduce310

the spread in a region to which the infrared channel may be blind.311

Inflation of the observation error312

Here, we explore assigned observation error inflation as a tuning parameter. Although non-inflated observation errors313

yielded the best results with fewer observations (Kugler et al., 2023), assimilatingmultiple observation typesmultiplies314

the number of observations, which can make the analysis prone to overfitting.315

First, we assigned 1-5 times the instrument error as observation error variance in the experiment VIS+WV62+WV73+REFL316

(Figure 8, lines 22-26). Increasing the assigned error decreases the weight given to an observation in the assimilation,317

which would lead to larger analysis errors if the observation operator were linear. In our case, however, the inflation318

improved the visible analysis while having a negligible impact on the infrared analysis. Inflating the observation error319

variance by a factor 4 (Figure 8, lines 22/25) improved the forecast CRPS of visible reflectance from -8% to -10%320

(compared to noDA), improved the RMSE of temperature from -7% to -11% and the RMSE of humidity from -3% to321

-6%. The relative FSS was improved from 85% to 107% in radar reflectivity, from 83% to 106% in visible reflectance322

and from 91% to 101% in precipitation.323

Second, we tested an experiment with optimised assigned observation errors as derived by the innovation di-324

agnostic (Equation 1) for experiment WV73+VIS, abbreviated OE:ID (Figure 8, line 11, compared to line 10). The325

64



18 Kugler & Weissmann - manuscript for review

F IGURE 10 Comparison of predicted probabilities of precipitation >1mm/h without (left) and with (right)
background error inflation (α=0.9) for the experiment VIS+WV62+WV73. Red contours show the true regions of
precipitation >1mm/h.

diagnosed and assigned error σo was approximately 0.06 for visible reflectance and 4.5K for 7.3 µm infrared BT. The326

inflation slightly worsened the FSS of radar reflectivity (and precipitation) from 66 to 61% (76 to 73%) and had a327

substantial impact on the RMSE of humidity (and wind), which improved from -3% to -7% (-5% to -8%) compared to328

noDA. In observation-space, there was only a small impact on the CRPS of visible reflectance and 7.3 µm BT (<2%pt).329

This may be surprising, given the 20 times inflated error variance for infrared BT, but it may be explained by the330

nonlinearity of the observation operator and the 5-minute model response to the increments. This suggests that the331

observation weight σ2
b
/(σ2

b
+ σ2

o ) is not necessarily a helpful metric when assimilating nonlinear observations. The332

optimised constant assigned observation errors mostly improved the forecasts; however, not in all metrics.333

Finally, we tested a dynamic observation error model, abbreviated OE:dyn in the experiment WV73+VIS (Figure334

8, line 12 compared to line 10). The method of Harnisch et al. (2016) inflates the assigned observation errors for335

infrared BT depending on cloud impact. Although some variables were less accurate in the analysis, the forecast336

was generally better (in terms of RMSE of humidity and wind) or slightly worse (in terms of the FSS). The 7.3 µm BT337

was less accurate in the analysis (with 34% instead of 40% CRPS error reduction compared to noDA), but the 3-h338

average forecast CRPS remained 15% error reduction. The RMSE of temperature was worse at analysis time (11%339

error reduction compared to 19% without inflation) but better in the forecast (8% error reduction instead of 7%).340

The strongest improvement was found in humidity (from 3% to 6% error reduction) and wind (from 5% to 8%). In341

terms of relative FSS, the forecasts were negatively affected from 66 to 60% for radar reflectivity, from 69 to 63%342

for cloudiness, and from 76 to 69% for precipitation. Similarly to the optimised constant assigned observation errors,343

forecasts of certain variables can be improved by applying a dynamic observation error model. Improvements can,344

however, not be expected in all metrics.345

Impact in the "warm-bubble" case346

To test if our findings also hold in a second weather situation, we assimilated the combination in a scenario with347

isolated convection. Figure 13 shows that the additional assimilation of visible and infrared channels in the warm-348

bubble case reduced the FSS in the first forecast hour and increased the FSS after 2.5 hours. Satellite channels did349
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F IGURE 11 Vertical profile of MAE reduction (Equation 4) of 7-layer vertically averaged cloud water and ice
concentration. Negative values indicate error reduction. Shading indicates standard error.

not substantially improve the spatial skill of precipitation forecasts. This might be explained by the fact that the first-350

guess errors were in the location and strength of the warm-bubble, which probably was well captured by the radar351

observations in the first place.352

5 | CONCLUSIONS353

This study extends our previous observing-system simulation experiment (OSSE) from the assimilation of separate assim-354

ilation to the combined assimilation of visible, infrared, and radar observations. The OSSE’s nature run is taken from355

Kugler et al. (2023), which used a 2-km grid WRF model to simulate scattered deep moist convection. The nature run356

features a challenging situation for data assimilation with a highly unstable convective environment, an uncertain loca-357

tion of emerging deep convection, and uncertain timing of the onset of deep convection. Furthermore, we assimilate358

remote sensing observations with nonlinear observation operators and with ambiguous information, as these obser-359

vations only indirectly observe the radiative signal of deep convection. High visible reflection, for example, can be360

caused by shallow clouds or cumulonimbus and low brightness temperature by high cirrus or cumulonimbus. Further-361

more, rapid error growth can quickly diminish the error reduction from data assimilation. This creates one of the most362
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F IGURE 12 Vertical profile of MAE reduction (Equation 4) of temperature and humidity, average over 256
gridpoints at 14 UTC. Negative values indicate error reduction. Shading indicates standard error.
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F IGURE 13 Timeseries of FSS for precipitation >1mm/h in the warm-bubble case.

difficult weather situations to predict. To avoid systematic errors and to focus on the particular characteristics of the363

observation types, we used the same model and observation operators for the nature run and the forecast ensemble.364

The ensemble adjustment Kalman filter assimilated visible reflectance (0.6µm), infrared brightness temperature (6.2365

and 7.3µm) and radar (10 cm) reflectivity observations.366

| Main results367

Our findings can be summarised in three points:368

1) Combined visible and infrared assimilation mitigates ambiguity369

The combined assimilation of visible and infrared observations mitigates the ambiguity of a single observation type370

and improves the analysis of clouds as shown in section 4.1. Infrared channels can not distinguish between deep371
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convective clouds with a high cloud top (water clouds with ice clouds above) and elevated thin cirrus clouds (only ice372

clouds). Assimilating only infrared channels can therefore lead to erroneous water clouds through ensemble correla-373

tions. Assimilating visible reflectance in addition to the infrared channel can remove erroneous water clouds in the374

prior as visible reflectance is only weakly sensitive to ice clouds and can see through ice clouds in most instances.375

Moreover, the introduction of erroneous water clouds can be avoided through the additional assimilation of visible376

information.377

2) Forecast impact of the combined visible and infrared assimilation378

The combined assimilation of visible and infrared observations also improved forecasts of precipitation and cloudi-379

ness. The relative FSS for radar reflectivity >50dBz of the combined satellite-assimilation experiment (VIS+WV73,380

α=0.3) reached 106% compared to the experiment that only assimilated radar (REFL), although satellite channels did381

not provide as much vertical resolution as radar. The errors of temperature, humidity, and wind stayed about as large382

as in the experiment with only one observation type.383

384

3) Combined assimilation of satellite and radar data385

Assimilating satellite channels in addition to radar reflectivity can improve forecasts of cloudiness and precipitation.386

Experiments which assimilated a combination of visible, infrared and radar observations had better forecasts of strong387

convection (FSS of radar reflectivity >50dBz improved to 107% compared to the experiment that only assimilated388

radar), cloudiness (FSS of visible reflectance >0.6 improved to 106%), and light precipitation (RR >1mm/h improved389

to 103%) as indicated in Figure 8. Moreover, it was shown that the benefit of additional observations depends on390

background error and observation error inflation.391

392

Discussion393

Compared to Kugler et al. (2023), this follow-up study shows that the combined assimilation of visible and infrared394

radiances is key to achieving forecast impacts that are comparable to those from radar assimilation in a difficult-to-395

predict weather situation such as the "random" case of this study.396

Our results confirm findings of Schröttle et al. (2020) using a different NWP model and assimilation algorithm.397

Compared to Schröttle et al. (2020), we found a higher impact of visible reflectance, which is probably related to a398

highly inflated assigned observation error in Schröttle et al. (2020). Moreover our results confirm their rough estimate399

of a comparable magnitude of potential impact of satellite and radar observations in our considered weather situation.400

The impact may differ for different weather situations, but satellite observations have unique advantages in case of401

non-precipitating clouds or in the initial stages of deep convection compared to radar. Additionally, satellites provide402

regularly gridded observations where radars are not available (e.g. over oceans and in less developed countries) and403

regardless of orographic shadowing that can limit radar coverage in complex terrain.404

Scheck et al. (2020) showed the beneficial impact of assimilating visible observations despite observation operator405

nonlinearity and ambiguous infromation that limit the efficacy of the assimilation. As we have seen in this paper, the406

ambiguity can be remedied by assimilating complementary satellite observations. However, it should be noted that407

real-case simulations are also facing additional challenges as for example systematic model errors (Geiss et al., 2021),408

systematic operator errors (Scheck et al., 2018) or correlated observation errors (Okamoto et al., 2019; Hu et al., 2023)409

that were excluded in our study.410

Future research should investigate the effectiveness of the combined assimilation in operational NWP centres411
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and using other assimilation algorithms such as variational or hybrid systems. Benefits can be especially expected in412

regions with gaps in radar coverage, such as large lakes, coastal regions and mountainous areas.413
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Chapter 5

Nonlinearity effects of assimilating visible
reflectance

Overview

This manuscript investigates the effects of observation operator nonlinearity on the assimi-
lation results (the third research goal in Section 1.4). Motivated by Scheck et al. (2020),
the effect of operator nonlinearity on the assimilation of visible observations with small
first-guess departures is confirmed. It is tested, whether the rejection of observations with
small first-guess departures can can improve the assimilation of visible observations. Finally,
systematic and random components in the analysis of visible and infrared observations
are presented, which may be used to improve the effectiveness of assimilating visible and
infrared observations in the future.

Own contribution

Conceptualization, formal analysis, investigation, methodology, software, visualization, and
writing. The author’s contribution to this publication is estimated to be about 80%.
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Data assimilation for numerical weather prediction is becoming in‐
creasingly reliant on satellite observations. Visible and infrared satel‐
lite observations are nonlinear functions of atmospheric state vari‐
ables called observation operators. However, the nonlinearity of
observation operators violates the linearity assumption in data as‐
similation, leading to sub‐optimal assimilation results. This paper
investigates the effect of observation operator nonlinearity for vis‐
ible and infrared radiances in the Ensemble Adjustment Kalman Fil‐
ter (EAKF) using observing‐system simulation experiments (OSSE).
First, we study the effect of nonlinearity on the assimilation of ob‐
servations with small first‐guess departures and show that their as‐
similation is beneficial. Secondly, we quantify the deviations of the
ensemble mean and variance adjustment from the theoretical ex‐
pectation. Deviations of linear and nonlinear adjustments can be
split into systematic (average) and random (variability) components.
On average, the nonlinear increments are lower than the linear in‐
crements (in absolute terms). However, in certain intervals, where
the linear increment would reduce cloudiness, the nonlinear incre‐
ment reverses the sign and increases cloudiness. The variance in
the nonlinear posterior is never reduced by more than what would
be expected with a linear observation operator. In case the prior
spread is small, the variance is often increased. However, on av‐
erage, the variance reduction is lower than the mean‐square error
reduction. Thus, the assimilation acts slightly inflationary.
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1 | INTRODUCTION

Nonlinear observation operators are widely and success‐
fully used in data assimilation for convective‐scale numer‐
ical weather prediction (NWP) despite violating the lin‐
earity assumption in variational and ensemble assimila‐
tion methods (Gustafsson et al., 2018; Hu et al., 2023).
Radar reflectivity has been assimilated for decades, how‐
ever, often using a latent‐heat nudging technique. In‐
frared radiance assimilation is a topic of ongoing research
(Geer et al., 2018; Li et al., 2022) but such observations
are still not operationally assimilated in operational km‐
scale models except at NSSL (Jones et al., 2020) and at
Deutscher Wetterdienst (DWD). Lately, the assimilation of
visible radiances has been investigated (Schröttle et al.,
2020; Scheck et al., 2020; Kugler et al., 2023) and was re‐
cently introduced operationally in the km‐scale model at
DWD in 2023.

However, many operational centers avoid the di‐
rect assimilation of nonlinear observations: Infrared ra‐
diance assimilation with a linearized observation opera‐
tor can produce detrimental prior distributions and un‐
realistic correlations (Zhou et al., 2023). Challenges like
this may have contributed to the popularity of assimi‐
lating retrievals like cloud water paths instead of the di‐
rect assimilation of infrared radiances (Jones et al., 2015,
2016, 2020; Johnson et al., 2022). Other researchers
avoid satellite data assimilation at all (Dowell et al., 2022).
Instead of direct assimilation of radar reflectivity, some
apply latent heat nudging (Jones and Macpherson, 1997;
Weygandt et al., 2022; Leuenberger and Rossa, 2007) or
assimilate retrievals (Chen et al., 2021).

The goals of this paper are is to support the develop‐
ment of methods for an improved assimilation of nonlin‐
ear observations. In section 2, we review why the non‐
linear observation operators introduce systematic devia‐
tions from the expected error reduction described by the
Kalman gain and describe the model setup and data used
in this study. In section3, we investigate nonlinearity in
four ways: First, we show two examples in which either a
cloudy or a clear‐sky observation is assimilated (single ob‐
servation experiments, section 3.1). Second, we investi‐
gate a hypothesis of Scheck et al. (2020) that assimilating

observations with small first‐guess (FG) departures seem
to be detrimental for the analysis, but we demonstrate
that this is not necessarily the case (section 3.2). Third,
we investigate reasons if observations with small FG de‐
partures should be assimilated as the associated errors
due to nonlinearity are large compared to the departures
for these observations (section 3.2.3). Last, we analyze
nonlinearity deviations of the ensemble mean and vari‐
ance from the optimal posterior in observation space for
visible and infrared satellite observations that are caused
by observation operator nonlinearity in section 3.3.

2 | METHODS

In the following, we use the scalar notation of Kar‐
speck and Anderson (2007) of the Ensemble Adjustment
Kalman filter (EAKF; Anderson, 2001). The EAKF assim‐
ilates observations serially. For each observation, the
EAKF adjusts the ensemble mean and variance in obser‐
vation space given the assigned errors and then projects
the observation‐space increments to model space by us‐
ing ensemble covariances.

2.1 | Nonlinearity deviation in observa‐
tion space

The nonlinear observation operator ℋ, generates an ob‐
servation

yo = ℋ[xt] + εo (1)

from a model state x, adding Gaussian noise εo. Non‐
linearity primarily refers to the relationship between an
independent observed variable on a dependent variable,
like liquid water path (LWP) for visible reflectance. Addi‐
tional nonlinearity effects can originate from the forecast
model xf(tk+1) = ℳ[xf(tk)], which can cause Gaussian
errors to evolve into non‐Gaussian error distributions,
which is, however, not the topic of this paper. Fundamen‐
tally, the optimum‐interpolation (”linear posterior”)

yalinear = ℋ(xb) +
σ2b

σ2b + σ2o
(yo − ℋ(xb)) (2)
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gives the optimal posterior given the prior, the observa‐
tion, and their errors. However, the nonlinear posterior
in an ensemble Kalman filter for one observation is (Kar‐
speck and Anderson, 2007):

yanonlinear = ℋ(xbij + δxij) (3)

with state‐space increments of state variable xj and en‐
semble member index i

δxij =
Cov(xbj , ℋ(xb))

σ2b
(yai − ℋ(xbi )) (4)

where the posterior in observation space is given by

yai = ⎛⎜
⎝
1
σ2b

+ 1
σ2o

⎞⎟
⎠

−1
⎛⎜
⎝

ℋ(xb)
σ2b

+ yo

σ2o
⎞⎟
⎠

(5)

+
√
√√
⎷

σ2o
σ2o + σ2b

(ℋ(xbi ) − ℋ(xb)) . (6)

Thus, the nonlinear posterior differs from the linear pos‐
terior due to nonlinearity in the observation operator and
sampling errors in the covariance. Since the linear poste‐
rior is the optimal solution in observation space, any de‐
viation from it means that the posterior is sub‐optimal.

Additionally, the ensemble variance of the linear pos‐
terior

σ2a =
σ2b

σ2b + σ2o
(7)

can significantly deviate from the ensemble variance of
the nonlinear posterior.

As an example, suppose that ℋ(x) is the visible re‐
flectance as a function of liquid water path as depicted
in Figure 1. Then the posterior is strongly affected by an
increment of 0 → 0.1 kg/m2 of LWP, but hardly reacts to
an increment 1 → 10kg/m2 of LWP. During the assimila‐
tion, the EAKF uses the ensemble covariance between
state variables and model‐equivalents of the observa‐
tions Cov(xb, yb) to derive state variable increments from
observation space increments (Anderson, 2003). In case
the ensemble has little spread around a clear‐sky mean,
the sensitivity dℋ/dxwill be underestimated (sometimes

F IGURE 1 Nonlinear relationship between liquid/ice
water path and observed (a) visible and (b) infrared radi‐
ance. Reproduced from Geiss et al. (2021).

referred to as zero‐gradient problem in variational data
assimilation). If the ensemble members also sample the
part of the function with larger dependency, the depen‐
dency can be overestimated. The overestimated covari‐
ance leads to an overestimated state variable increment
δx. y Applying the operatorℋ, which is sensitive to small
changes in δx to the updated state xb+δx, therefore, leads
to a jump in the posteriorℋ(xb + δx), which is then well
above the expected linear posterior.

To summarize, the nonlinearity deviation can be
caused by the nonlinearity of the observation operator
and by sampling errors of the linear regression from ob‐
servation space to model space with a small sample (the
ensemble).
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Definition of the nonlinearity deviation
We define a nonlinearity deviation as the difference be‐
tween the linear and the nonlinear posterior ensemble
mean in observation space:

δyNL = yanonlinear − yalinear (8)

The nonlinearity deviation is zero yanonlinear = yalinear,
if the observation operators are linear and if the model
integration of 60 s can be neglected. In case of nonlinear
operators, the regression of increments from observation
space intomodel space introduces deviations, as this step
assumes a linear relationship in the computation of the
covariance (equation 4). The covariance effectively lin‐
earizes the nonlinear relationship given by pairs of state
variable‐observation, (xij, ℋ(x)).

Although the linear posterior is optimal if the linear‐
ity assumptions are true, it can usually not be achieved as
different assumptions make the nonlinear posterior sub‐
optimal. The nonlinear posterior will almost always differ
from the linear posterior in the case of nonlinear observa‐
tion operators.

2.2 | Model setup and data

The data for this study was generated in an observing‐
system simulation experiment (OSSE) (Kugler et al., 2023).
The weather situation features scattered deep moist con‐
vection in a highly unstable environment. The forecast
model is the Weather Research and Forecasting (WRF)
model in a 2‐km convective‐scale resolution. We evalu‐
ate the observation operator (ℋ) nonlinearity in the all‐
sky assimilation of visible and infrared radiances. In or‐
der to study only the effect of theℋ‐nonlinearity, we set
systematic errors to zero by assuming a perfect forecast
model and no errors in the ℋ‐operator. Thus, the obser‐
vations were synthetically generated. Observations were
assimilated into our 40‐member forecast using the EAKF
(Anderson, 2001) a serial deterministic square root filter,
through the Data Assimilation Research Testbed (DART,
Anderson et al. (2009)). The updated variables were tem‐
perature, water vapor mixing ratio, dry air mass in the col‐
umn, geopotential, three wind components, cloud water

and ice mixing ratio.

The nonlinear posterior was evaluated after a 60 s
forecast, similar to Scheck et al. (2020), because diagnos‐
tic cloud fractions are not available at analysis time but
are computed by the model. Additionally, cloud incre‐
ments can evaporate in non‐saturated air. Importantly,
no inflation was applied in the experiments to purely fo‐
cus on the effect of the nonlinear observation operator.

Section 3.1 uses data from two single observation ex‐
periments. Observations were generated at 13 UTC from
the nature run of the case ”random” of Kugler et al. (2023)
and assimilated with a five‐member ensemble. The clear‐
sky observation was randomly selected. The cloudy ob‐
servation was selected as the observation with the high‐
est observed value of 961 observations of the ”VIS” ex‐
periment in Kugler et al. (2023).

Sections 3.2‐3.3 use data from two cycled data‐
denial experiments with 961 observations per assimila‐
tion time. Observations are assimilated at five times be‐
tween 13 and 14 UTC. In the ”control” experiment, all ob‐
servations were assimilated. In the experiment ”reject”,
only observations with a first‐guess departure larger than
one observation error standard deviation (0.03) were as‐
similated. Nature and prior were almost identical to the
”random” case of Kugler et al. (2023).

In subsection 3.2.3 a data‐denial experiment is re‐
peated with only two observations, of which one is
cloudy, and one is clear‐sky. Both observations are ap‐
proximately 10 km apart.

3 | RESULTS

3.1 | Single observation experiments illus‐
trating nonlinear effects

To illustrate the fundamental differences between the lin‐
ear and the nonlinear analysis, we discuss two single‐
observation experiments.

Experiment 1:
We assimilate a cloudy visible satellite observation (re‐
flectance value: 0.96) with a 5‐member ensemble and
with an observation error of 0.03. Figure 2a shows the
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(a) Example 1 assimilating a cloudy observation

(b) Example 2 assimilating a clear‐sky observation

F IGURE 2 Two examples in which a cloudy or a clear‐
sky observation is assimilated with a 5‐member ensem‐
ble. Shown is the observation, the prior, and the posterior
ensemble in observation space with fitted PDFs for prior
(solid), linear posterior (dashed), and nonlinear posterior
(dash‐dotted). Triangles indicate the ensemble mean or
the observation on the x‐axis.

observation, the prior, and the posterior ensemble in ob‐

servation space with fitted PDFs. The prior has three
clear‐sky ensemble members (0.293), one nearly clear‐
sky member (0.314), and one slightly cloudy member
(0.438). Thus, the prior mean is 0.326, with a spread of
0.063. Using the linear equation 2, the posterior mean is
0.84 with a spread of 0.027. Note that given the uncer‐
tainty of the prior and the observation, either the likeli‐
hood of observing such a cloud was very low or the un‐
certainty of the prior was heavily underestimated. Given
the small ensemble, the latter is obvious.

The nonlinear posterior shows that the actual re‐
flectance in the posterior is affected much less than the
linear equationwould suggest. Only threemembers show
reflectance larger than 0.78; one member has 0.51, and
one member has 0.46, resulting in an ensemble mean of
0.69with a spread of 0.19, i.e., the posterior variance was
49 times higher than in the linear posterior. The nonlinear
posterior shows much more variety in reflectance values,
and thus, it seems that the nonlinearity of the observation
operator mitigates the underestimation of prior variance.

Experiment 2:

Here, we assimilate a clear‐sky observation (value: 0.293)
with a 5‐member ensemble and an observation error of
0.03. Figure 2b illustrates the assimilation in observation
space. In the prior, we had two ensemble members with
clear sky (0.293), one member with 0.36, and two mem‐
bers close to 0.60. Thus, the prior mean is 0.431, with
a spread of 0.16. The resulting linear posterior mean is
0.297, with a spread of 0.03.

In this example, the nonlinear posterior mean (0.315)
is closer to the linear posterior, and the spread (0.05) is
only slightly larger than expected. We conclude that in
this example, the actual posterior is less affected by the
nonlinearity of the observation operator. Common to
both examples is that the variance of the nonlinear pos‐
terior is larger than that of the linear posterior. However,
the largest deviation from the linear equations is the 49
times higher variance in example 1.
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3.2 | Observations with small first‐guess
departures

3.2.1 | Diagnostic results

In the first study assimilating visible reflectance, Scheck
et al. (2020) found that for some observations with small
first‐guess (FG) departures, the analysis error |ya−yo|was
larger than the FG error |yb − yo| . Thus, it seemed that
the assimilation of observations with small FG departures
had a detrimental effect on the analysis. Scheck et al.
(2020) concluded that ”the nonlinearity of the operator
thus limits the effectiveness of the visible assimilation”.
Therefore, one could think that rejecting those observa‐
tions could improve the analysis.

To test this hypothesis, we evaluated the analysis
error reduction (posterior‐prior) for every observation‐
forecast pair, once for the linear posterior (Figure 3a) and
once for the nonlinear posterior (Figure 3b). The linear
posterior always reduced the error to observations. Fig‐
ure 3a confirms that this is approximately the case in our
experiment. However, the analysis error of the nonlinear
posterior (Figure 3b) is sometimes higher than that of the
prior. Especially the analysis pertaining to observations
with small FG departures is often worse in the nonlinear
posterior than in the prior. Consequently, it seems legit‐
imate to reject (not assimilate) those observations with
small FG departures.

3.2.2 | Cycled experiment: Impact on
RMSE and bias

The diagnostic result motivated a data‐denial experi‐
ments inwhich observationswith small FG departures are
rejected. In the experiment ”reject”, we assimilated only
observations with FG departures larger than 0.03, while
in the ”control” experiment, we assimilated all observa‐
tions.

Figure 4 compares the posterior ensemble‐mean of
for 104 observations with small FG departures at 13 UTC.
It reveals that the posterior reflectance of the ”reject” ex‐
periment was, on average, substantially higher than the
posterior of the ”control” experiment. Assimilating only
observations with larger FG departures, thus, increased

(a)Optimal‐interpolation error reduction

(b) Actual error reduction

F IGURE 3 Error reduction (posterior‐prior) compared
to first‐guess‐departure for 0.6µm visible reflectance,
both dimensionless. Orange crosses indicate that both
first‐guess and observation were clear‐sky (VIS<0.4).
Points on the green dashed line have 100% error reduc‐
tion. Points above the 0‐line mark increased the error in
the posterior.

79



KUGLER & WEISSMANN ‐ MANUSCRIPT IN PREPARATION 7

the reflectance values of these observations, on average,
and ”pulled the analysis from an already nearly correct
prior”.

While Figure 4 illustrates the effect well, it is only
one snapshot in time. Thus, we also evaluate the bias
and RMSE for five assimilation cycles between 13 and 14
UTC in a cycled experiment. Figure 5 shows the RMSE
(upper panel) and bias (lower panel) relative to the con‐
trol experiment for all observations (left bar) and for the
subset with small FG departures (right bar). In the reject
experiment, the bias is increased over all observations in
all five assimilation cycles, and the RMSE is increased for
the subset of small FG departures for all five cycles. How‐
ever, when computed over all observations, the RMSE is
similar in the reject and the control experiment.

We conclude that rejecting observations with small
FG departures is detrimental for the analysis. Further in‐
vestigation of potential reasons will follow in the subse‐
quent section.

F IGURE 4 The posterior ensemble mean reflectance
in the ”control” experiment that assimilated small FG‐
departures and the ”reject” experiment that rejected
small FG‐departures. Shown are the analyses of 104 ob‐
servations that had a FG‐departure (<0.03) at 1300 UTC.
The posterior was evaluated 60s after analysis time.

F IGURE 5 Error of the ensemble mean of the exper‐
iment ”reject” in %, relative to the control experiment.
The left column uses all data. The right column uses the
subset of observations with small FG‐departures (<0.03);
Bars indicate averages and whiskers indicate the range of
the error over five assimilation times.

3.2.3 | Insights from a two‐observation
experiment

Here, we show an example of how the analysis benefits
from an observation with a small first‐guess departure in
a two‐observations‐experiment.

Two‐observations data‐denial experiment

In the first experiment, we have two observations of vis‐
ible reflectance: The first observes the cloud top of a
deep convective cell. The second observes a cloud‐free
grid‐box whose center is 10 km from the first observa‐
tion. The prior ensemble‐mean for both observations is
clear‐sky in most members, but cloudy in a few members
(yb≈0.4). The experiment consists of a control run and a
”reject” run, which does not assimilate the cloud‐free ob‐
servation with its small FG‐departure. In the control run
we assimilate the cloud‐free observation first and then as‐
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similate the cloudy observation. In the ”reject” run we do
not assimilate the cloud‐free observation and only assim‐
ilate the cloudy observation.

Figure 6 shows the ensemble mean and spread for
the two observed grid‐boxes ”pixel#1” and ”pixel#2”. For
both grid‐boxes, there are three states and variances:
prior, posterior‐1 (after assimilating the clear‐sky obser‐
vation) and posterior‐2 (after assimilating the cloudy ob‐
servation).

F IGURE 6 The ensemble mean and spread of the anal‐
ysis at both observation sites.

Spread reduction limits erroneous mean‐increments
Now, we show that assimilating observations with a small
FG‐departure reduces the ensemble spread/variance and
thereby avoids erroneous increments of the ensemble
mean due to nearby observations.

Figure 7 compares the ensemble variance after assim‐
ilating (experiment ”control”) or rejecting (experiment ”re‐
ject”) observations with small FG‐departure. Assimilating
observations with small FG‐departure reduced the vari‐
ance (over the sample of small FG‐departures) by a fac‐
tor of three. Consequently, the variance is much higher
when such observations are rejected. Then, when we as‐
similate close‐by observations (within localization radius)
with large FG‐departures, these observations can modify
the state (in a good or bad way). But as the prior for the

observations with small departures was quite accurate,
the risk of a detrimental increment is comparably large.
If observations with small FG‐departures are assimilated,
they reduce the ensemble variance and pin the prior at
these locations so that other observations with large FG‐
departures can do less harm due to for example imperfect
covariances. This explains why the assimilation of small
FG‐departures is important and why they improve the en‐
semble mean in Figure 4.

F IGURE 7 Ensemble variance after assimilating ob‐
servations with small FG‐departures (”control”) but be‐
fore the assimilation of other observations, compared to
the ensemble variance without assimilating observations
with small FG‐departures (”reject”, i.e. prior variance).
Both were evaluated at analysis time. Shown are the
analyses of 104 observations with small FG‐departures
at 1300 UTC.

We have seen that the observation operator nonlin‐
earity leads to deviations from the optimal posterior for
all observations and that we can’t avoid the detrimental
effect for observations with small FG‐departures by re‐
jecting them. Let us now study the effect of nonlinearity
on the posterior ensemble mean increment and variance
reduction.

3.3 | Nonlinearity effects on analysis
mean and variance

In this section, we quantify the effect of observation oper‐
ator nonlinearity on the ensemble mean increments and
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variance reduction. As shown in section 2.1, linear pos‐
terior yalinear from Equation 2 is optimal in observation
space, independent of sub‐optimalities in the projection
to model space. The existence of a nonlinear observa‐
tion operator does not change the optimality of Equa‐
tion 2. Therefore, we desire that the actual (nonlinear)
ensemble‐mean posteriorℋ(xai ) is close to the linear pos‐
terior ensemble‐mean yalinear. Similarly, the ”nonlinear”
posterior ensemble variance Varens[ℋ(xai )] shall be close
to the ”linear” variance σ2a = σ2b/(σ2b + σ2o).

0.6µm visible reflectance
Before we review the deviations for visible and infrared
observations, we consider the special case of a linear ob‐
servation operator, a 2‐m temperature observation. Fig‐
ure 8a shows the nonlinear and the linear ensemble mean
increment. As expected, the deviations are close to zero
for the whole range. Small deviations are to be expected
due to the one‐minutemodel integration and the fact that
themodel state variable is potential temperature, not sen‐
sible temperature. Similarly, the deviations of the nonlin‐
ear to the linear variance adjustment are close to zero in
Figure 8c.

In contrast, Figure 8b compares the increments for
visible reflectance observations. It can be seen that the
nonlinear increments are systematically lower than the
linear increments, especially for large positive linear in‐
crements, where the observation is much larger than
the prior. Similarly, for large negative linear increments,
where the observation is much smaller than the prior, the
nonlinear increments are smaller (in absolute terms) than
the linear ones. However, for slightly negative linear in‐
crements (−0.2 < Δ < .05), there is a considerable num‐
ber of samples showing a positive nonlinear increment,
although the average of the nonlinear increments is close
to zero.

The nonlinearity also introduced stochastic variabil‐
ity around the average deviation. Figure 8d shows the
deviation of the nonlinear to the linear variance adjust‐
ment. The assimilation of visible reflectance introduced
a peculiar effect, the increase of ensemble variance. Es‐
pecially for small linear variance adjustments (when the
prior spread was small), the nonlinear variance is often in‐

creased. This effect was already illustrated in Figure 2a,
where the prior wasmostly clear‐sky, and the assimilation
yielded a much larger posterior variance than in the case
of a linear operator. However, there are also cases where
the nonlinear variance adjustment is close to the expec‐
tation, similar to the example in Figure 2b.

On average over all 4805 observations over five as‐
similation times, the mean ensemble‐variance reduction
was 26.9% while the mean‐square error of the ensem‐
ble mean was reduced by 40.8%. This means that the
posterior was more accurate than the ensemble variance
suggested.

7.3µm infrared brightness temperature

In the same way as before, we evaluate the nonlinearity
deviation in Figure 9a for the ensemble mean and vari‐
ance adjustment of 7.3µm infrared brightness tempera‐
ture (BT). Both the visible and infrared operators share
similarities in their nonlinearity deviations. In most cases,
nonlinear increments are smaller in magnitude than their
linear counterparts. The deviations are smallest, on av‐
erage, between ‐5 and +5K. However, there are strong
outliers in the range (0‐10K), where the linear increment
would increase the BT (less cloudy), the nonlinear incre‐
ment decreases the BT.

Figure 9b shows the deviation of nonlinear vari‐
ance adjustment compared to the linear variance adjust‐
ment. In all cases, the nonlinear variance adjustment
was smaller in magnitude than its expectation. Again, for
small linear variance reductions, where the prior spread is
small, the posterior variancewas larger than the prior vari‐
ance. Finally, large linear variance reductions also tend to
be large in their nonlinear counterparts.

On average over 4805 observations over five assim‐
ilation times, the mean‐square error of the ensemble
mean was reduced by 33.1%, while the mean ensemble‐
variance was reduced by 17.7%. Thus, the posterior was
improved more than the variance reduction indicated.
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(a) Ensemble‐mean increment T2M (b) Ensemble‐mean increment VIS

(c) Variance reduction T2M (d) Variance reduction VIS

F IGURE 8 Deviation of linear and nonlinear increment (posterior‐prior) of the ensemble‐mean when assimilating
(a) 2m temperature or (b) 0.6µm visible reflectance. Dashed lines indicate mean and standard‐deviation over bins of
size 0.1. Deviation of linear and nonlinear ensemble‐variance reduction when assimilating only (c) 2m temperature or
(d) 0.6µm visible reflectance. Dashed lines indicate mean and standard‐deviation over bins of size 0.005.
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4 | CONCLUSION

This study provides insight into the systematic and ran‐
dom effects of assimilating observations with nonlinear
observation operators, specifically visible and infrared ob‐
servations. The deviations are investigated in idealized,
perfect‐model observing‐system simulation experiments
(OSSE) using a 2‐km grid WRF model. Visible (0.6µm)
and infrared (6.2 and 7.3µm) observations are synthet‐
ically generated and assimilated using the ensemble ad‐
justment Kalman filter (EAKF). The analysis was evalu‐
ated in a summertime case with scattered deep convec‐
tive storms.

Main findings
1) The nonlinearity of visible and infrared observation op‐
erators causes the posterior ensemble to deviate from
what would be expected in the case of linear observa‐
tion operators. Despite these deviations from linearity,
the assimilation of visible and infrared observations im‐
proves the posterior ensemble mean on average. Devi‐
ations can be partitioned into systematic (average) and
random (variability components. On average, the nonlin‐
ear increments are lower than the linear increments (in
absolute terms). However, in certain intervals, where the
linear increment would be a decrease of reflectance (or
an increase of BT), the nonlinear increment shows an in‐
crease of reflectance (or a decrease in BT). Thus, the non‐
linearity reverses the sign of the increment and leads to
increased cloudiness in situations where the prior already
had too high reflectance (or too cold BT).

2) The variance in the nonlinear posterior is never re‐
duced bymore thanwhat would be expectedwith a linear
observation operator. Contrary to the expectation that
assimilation always reduces variance, the variance can in‐
crease when the prior spread is small, as shown by the
example in section 3.1. In most cases, however, the vari‐
ance is reduced. Verifying the ensemble mean showed
that the variance reduction is lower than the reduction
of mean‐square error. Thus, the assimilation acts slightly
inflationary.

3) The assimilation of observations with small FG depar‐
tures was suspected to deteriorate the analysis (Scheck

et al., 2020). Although a first evaluation (section 3.2) sug‐
gested a deterioration, additional experiments showed
that rejecting small first‐guess departures does not re‐
duce the overall error but increases both the bias and
the mean‐square error at the location of the observa‐
tions with small first‐guess departures. While the error
at the location of observations with small departures was
increased, the assimilation of them avoided that other
nearby observations draw the analysis away from the ac‐
curate first guess. In summary, we therefore conclude
that also observations with small first guess departures
should be included in the assimilation.
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Chapter 6

Conclusions

This thesis investigates the potential impact of all-sky visible and infrared assimilation for the
prediction of convective-scale storms in idealized observing-system simulation experiments
(OSSE). The idealized setup allows for a detailed analysis of the potential impact as well
as of the consequences of observation operator nonlinearity in the absence of additional
effects from systematic model and operator errors that may be present in non-idealized
NWP systems. This thesis is based on three research papers, which

1) provide evidence for the high potential forecast impact of visible and infrared satellite
observations and quantify it relative to that of radar observations,

2) demonstrate that the combination of infrared and visible observations reduces the
ambiguity of information from individual channels, and

3) quantify systematic effects of the operator nonlinearity for visible and infrared obser-
vations and reveal that also observations with small deviations from the first guess
should be assimilated.

Chapter 3 is the first study that provides a direct, quantitative comparison of the forecast
impact of visible, infrared, and radar observations. Chapter 4 is the first study that reveals
the complementary value of assimilating visible and infrared observations for the analysis of
clouds and their vertical structure. Chapter 5, for the first time, analyses deviations caused
by the operator nonlinearity for visible and infrared observations.

The following section discusses this thesis’s main findings in relation to preceding research.
Finally, the implications of the findings are discussed in a broader context in the last section.

6.1 Summary and discussion

Chapter 3: Potential impact of assimilating visible and infrared satellite
observations

The first research goal was to assess the potential impact of assimilating cloud-affected
satellite observations for the prediction of convective storms. The publication in Chapter 3
(Kugler et al., 2023) conducted idealized experiments that neglect model and operator errors
to focus on the remaining challenges for assimilating visible and infrared observations. Given
these simplifications, the resulting absolute impact can likely not be realized in an operational
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system. To overcome this limitation, the experiments with satellite observation are evaluated
in comparison with experiments for more commonly assimilated radar observations. The
resulting impact estimates relative to radar can be expected to be better transferable to
real NWP systems.

Chapter 3 presents the first study directly comparing the assimilation of visible, infrared
(6.2 and 7.3 µm), and radar observations. By interpreting the potential impact in relation to
other observation types, Kugler et al. (2023) avoided the shortcomings of other assimilation
impact studies that only compare the impact of one observation type in comparison to a
reference experiment without these observations. This limitation of other studies makes
it particularly difficult to compare preceding studies on infrared assimilation, which often
revealed a positive forecast impact, but did not investigate if and to which extent the same
forecast impact could have been reached by assimilating another observation type.

The first study on visible assimilation in convective-scale NWP by Scheck et al. (2020)
assessed the additional forecast impact of visible observations in a near-operational setup
and revealed a positive forecast impact in a case study. However, the study did not conduct
any comparable experiments for radar or infrared observations. Schröttle et al. (2020)
compared the forecast impact of visible and infrared 6.2 µm assimilation to a free forecast
without data assimilation in an idealized OSSE.

Kugler et al. (2023) added evidence of a high potential impact of assimilating cloud-
affected satellite observations. Regarding the impact of visible observations, Kugler et al.
(2023) largely agrees with Scheck et al. (2020) on a substantial potential of assimilating
this observation type. However, Schröttle et al. (2020) had reported a substantially lower
impact from assimilating visible observations than from infrared 6.2 µm observations. In
contrast, Kugler et al. (2023) found the impact of assimilating visible observations to be
higher than that of infrared 6.2 µm observations in a very similar idealized weather scenario.
An explanation for the different results might be the overly inflated assigned observation
error variance in Schröttle et al. (2020). Based on extensive sensitivity studies for parameter
settings in this thesis, we conclude that the potential of infrared and visible observations
is roughly of a similar magnitude. Second, Kugler et al. (2023) additionally evaluated the
impact of assimilating the 7.3 µm channel. Its impact was considerably higher than that
of the 6.2 µm channel. This is likely related to the lower peak of the weighting function
of the 7.3 µm channel, which allows to detect also clouds at lower levels compared to the
6.2 µm channel. Third, the experiments reveal that either assimilating one infrared or visible
satellite channel can be nearly as beneficial as assimilating 3D radar observations under
favorable conditions and about as beneficial as 2D radar observations in a more challenging
scenario for data assimilation.

Chapter 4: Combined assimilation of multiple satellite channels

The second research goal was to analyze whether it would be possible to mitigate the
ambiguity of visible and infrared observations in the assimilation by their combined use.
To this end, this chapter extends the study in the previous chapter to the combined
assimilation of multiple observation types. The novelty of this study is that it evaluates
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the vertical distribution of analysis errors for different cloud conditions and features a more
comprehensive sensitivity test for assimilation settings.

The results revealed that the combined assimilation can mitigate the ambiguity of
individual visible and infrared channels and improve the analysis of the vertical distribution of
clouds. Moreover, forecasts of precipitation and cloudiness were improved. The combined
assimilation of visible and infrared observations led to an even higher skill score than the
experiment that only assimilated radar observations. However, the stronger inflation for the
radar-only experiment might have contributed to this result. Nevertheless, it is evident that
combining infrared and visible observations leads to better forecasts than the assimilation
of either one of them and that their combined potential is at least similar to that of radar
observations.

The prior literature on a combined assimilation of visible and infrared observations is limited
to a single paper. Schröttle et al. (2020) noted that the combined assimilation considerably
improved the accuracy of temperature, humidity, and wind. Chapter 4 demonstrates that
the combined assimilation is also beneficial for cloud variables, especially in conditions where
the truth has ice clouds. In such conditions, visible observations can provide additional
information on water clouds as thin ice clouds above are not opaque in this spectral range.
Considering visible and infrared observations in synopsis thus allows to discriminate between
thin ice clouds and deep convective clouds in many instances.

Chapter 5: Nonlinearity effects of assimilating visible reflectance

The third research goal was to improve our understanding of nonlinearity effects induced by
nonlinear observation operators. Although the functional relationships in the observation
operator were well known, the consequences on the analysis ensemble mean/variance
adjustment had been unclear. Chapter 5 presents a manuscript in preparation, which
quantifies the deviations of the ensemble mean and variance from the theoretical expectation
that is based on the linearity assumption. The deviations were evaluated using the same
configuration as for the experiments in chapters 3 and 4. Additionally, the role of nonlinearity
is evaluated for the subset of observations with small first-guess departures.

Scheck et al. (2020) found that observations with small first-guess departures are
particularly affected by observation operator nonlinearity. More specifically, they noted that
"the nonlinearity of the operator thus limits the effectiveness of the visible assimilation".
Chapter 5 confirms the particular effect that was observed in Scheck et al. (2020). However,
additional experiments showed that rejecting observations with small first-guess departures
does not reduce the overall error but increases both the overall bias and the mean-square
error at the location of the observations with small first-guess departures. While the
observations with small departures may lead to a direct detrimental adjustment of the mean
state, they also lead to a reduction of the ensemble variance (i.e. tell the ensemble that the
first guess is accurate) and thereby reduce that risk that other nearby observations draw
the analysis away from the accurate first guess. In summary, we therefore conclude that
also observations with small first guess departures should be included in the assimilation.

Regarding the effects on the ensemble mean adjustment, this chapter reveals a systematic
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deviation of the actual posterior in observation space from its theoretical expectation
(assuming a linear observation operator). Moreover, the analysis ensemble variance can
be much larger than expected, and the variance tends to overestimate the mean-squared
error of the analysis. However, the overestimation may be beneficial in practice as it can
compensate for a common underdispersiveness of convective-scale ensembles.

Chapter 5 quantifies the effect of observation operator nonlinearity of visible and infrared
radiances on the assimilation results in observation space. In the future, these systematic
deviations could be taken into account when assimilating these observations. Thus, the
findings can be a basis for a potential correction algorithm that corrects the systematic part
of the nonlinearity deviations.

6.2 Concluding remarks

Synthesis of findings

Despite the violated assumptions of linearity and Gaussianity due to the visible and infrared
observation operators, the all-sky assimilation of such radiances bears a substantial potential
benefit for convective-scale forecasts. This thesis estimated the forecast impact in idealized
studies that omit certain errors of operational NWP. To make the impact estimates better
transferable to real NWP systems, the estimated impact was evaluated in relation to more
commonly assimilated radar observations.

Furthermore, the estimation of nonlinearity deviations improves the understanding of
nonlinearity effects and paves the way to compensate for the undesired effects of nonlinear
observation operators, which could ultimately improve the effectiveness of assimilating
nonlinear observations.

Outlook

This thesis focused on the potential impact of satellite observations and the effect of
operator nonlinearity in the absence of systematic model and operator errors as well as
correlated observation errors. Future studies should investigate the role of these neglected
additional challenges to achieve a high impact of these observations in regional NWP
systems: Systematic model error can be introduced by using a higher resolution nature run.
Such an endeavor is already ongoing in a companion study. Similarly, systematic operator
errors could be represented through the use of different operator settings or assumptions
for the experiments and the nature run (Li et al., 2022).

Second, this thesis investigated the assimilation in idealized OSSEs of the EAKF. Ad-
ditionally, the benefits of the combined assimilation should be investigated with different
assimilation algorithms in areas without radar coverage, such as the sea, and in cases of
non-convective weather conditions, e.g., fog and low stratus.

Third, other observation types might be complementary to visible and infrared radiances.
For example, in cases where visible and infrared are blind, the microwave spectrum could
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still be used to observe cloud properties below the cloud top and near-infrared or infrared
window channels may substitute the lack of visible information at nighttime.
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Acronyms

3D-Var 3D-Variational data assimilation. 3, 8

4D-Var 4D-Variational data assimilation. 3, 4, 8

DART Data Assimilation Research Testbed. 23

EAKF Ensemble adjustment Kalman filter. 8, 11, 19, 20, 23, 92

ECMWF European Centre for Medium-Range Weather Forecasts. 2–4

EnKF Ensemble Kalman filter. 8, 17, 19

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites. 7, 9

LEO Low Earth orbit. 6

MFASIS Method for fast satellite image simulations. 21

MSG Meteosat second generation. 7

NCEP National Oceanic and Atmospheric Administration. 3

NOAA National Oceanic and Atmospheric Administration. 1, 14

NWP Numerical weather prediction. 1, 3, 5, 6, 8, 10, 11, 13, 15, 17, 21, 89, 90, 92

OSSE Observing-system simulation experiments. 11, 23, 90, 92

PDE Partial differential equations. 2

RTTOV Radiative transfer model for the Television and Infrared Observational Satellite.
20, 23

SEVIRI Spinning Enhanced Visible and Infrared Imager. 7

WRF Weather Research and Forecasting. 13, 14, 23
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